Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering

被引:35
作者
Bamba, Takahiro [1 ]
Yukawa, Takahiro [1 ]
Guirimand, Gregory [1 ,2 ,4 ]
Inokuma, Kentaro [1 ]
Sasaki, Kengo [1 ,2 ]
Hasunuma, Tomohisa [1 ,2 ]
Kondo, Akihiko [1 ,2 ,3 ]
机构
[1] Kobe Univ, Grad Sch Sci Technol & Innovat, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[2] Kobe Univ, Engn Biol Res Ctr, Nada Ku, 1-1 Rokkodai, Kobe, Hyogo 6578501, Japan
[3] Biomass Engn Program, RIKEN, Tsurumi Ku, 1-7-22 Suehiro Cho, Yokohama, Kanagawa 2300045, Japan
[4] Univ Francois Rabelais Tours, EA2106 Biomol Biotechnol Vegetales, F-37200 Tours, France
关键词
Yeast cell factory; Biomass utilization; Metabolic engineering; xylonate dehydratase; 2-Ketoacid decarboxylase; Fe-S cluster; ETHANOL-PRODUCTION; XYLITOL PRODUCTION; SYNTHETIC PATHWAY; MULTIPLE GENES; RICE STRAW; YEAST; EXPRESSION; CLUSTER; SURFACE; ENZYME;
D O I
10.1016/j.ymben.2019.08.012
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 54 条
[1]   Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes [J].
Abdel-Ghany, Salah E. ;
Day, Irene ;
Heuberger, Adam L. ;
Broeckling, Corey D. ;
Reddy, Anireddy S. N. .
METABOLIC ENGINEERING, 2013, 20 :109-120
[2]   Characterization and mutagenesis of two novel iron-sulphur cluster pentonate dehydratases [J].
Andberg, Martina ;
Aro-Karkkainen, Niina ;
Carlson, Paul ;
Oja, Merja ;
Bozonnet, Sophie ;
Toivari, Mervi ;
Hakulinen, Nina ;
O'Donohue, Michael ;
Penttila, Merja ;
Koivula, Anu .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 100 (17) :7549-7563
[3]   Disruption of PHO13 improves ethanol production via the xylose isomerase pathway [J].
Bamba, Takahiro ;
Hasunuma, Tomohisa ;
Kondo, Akihiko .
AMB EXPRESS, 2016, 6 :1-10
[4]   The bacterial Entner-Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron-sulfur cluster enzyme 6-phosphogluconate dehydratase [J].
Benisch, Feline ;
Boles, Eckhard .
JOURNAL OF BIOTECHNOLOGY, 2014, 171 :45-55
[5]   Biotechnological production of 1,2,4-butanetriol: An efficient process to synthesize energetic material precursor from renewable biomass [J].
Cao, Yujin ;
Niu, Wei ;
Guo, Jiantao ;
Xian, Mo ;
Liu, Huizhou .
SCIENTIFIC REPORTS, 2015, 5
[6]   Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae [J].
Carlsen, Simon ;
Ajikumar, Parayil Kumaran ;
Formenti, Luca Riccardo ;
Zhou, Kang ;
Phon, Too Heng ;
Nielsen, Michael Lynge ;
Lantz, Anna Eliasson ;
Kielland-Brandt, Morten C. ;
Stephanopoulos, Gregory .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (13) :5753-5769
[7]   ONE-STEP TRANSFORMATION OF YEAST IN STATIONARY PHASE [J].
CHEN, DC ;
YANG, BC ;
KUO, TT .
CURRENT GENETICS, 1992, 21 (01) :83-84
[8]   Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1 [J].
Courel, M ;
Lallet, S ;
Camadro, JM ;
Blaiseau, PL .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (15) :6760-6771
[9]  
de la Plaza M, 2004, FEMS MICROBIOL LETT, V238, P367, DOI 10.1111/j.1574-6968.2004.tb09778.x
[10]   THE DNA INTERMEDIATE IN YEAST TY1 ELEMENT TRANSPOSITION COPURIFIES WITH VIRUS-LIKE PARTICLES - CELL-FREE TY1 TRANSPOSITION [J].
EICHINGER, DJ ;
BOEKE, JD .
CELL, 1988, 54 (07) :955-966