K-THEORY OF AFFINE ACTIONS

被引:0
作者
Waldron, James [1 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, England
关键词
vector bundles; equivariant K-theory; differential geometry;
D O I
10.2140/pjm.2019.301.639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Lie group G and a vector bundle E we study those actions of the Lie group TG on E for which the action map TG x E -> E is a morphism of vector bundles, and call those affine actions. We prove that the category Vect(TG)(aff)(X) of such actions over a fixed G-manifold X is equivalent to a certain slice category g(X)\Vect(G )(X). We show that there is a monadic adjunction relating Vect(TG)(aff)(X) to Vect(G) (X), and the right adjoint of this adjunction induces an isomorphism of Grothendieck groups K-TG(aff) (X) congruent to K O-G (X) . Complexification produces analogous results involving T(C)G and K-G(X).
引用
收藏
页码:639 / 666
页数:28
相关论文
共 10 条
[1]   The Atiyah Algebroid of the Path Fibration over a Lie Group [J].
Alekseev, Anton ;
Meinrenken, Eckhard .
LETTERS IN MATHEMATICAL PHYSICS, 2009, 90 (1-3) :23-58
[2]   GROTHENDIECK RING OF CATEGORY OF ENDOMORPHISMS [J].
ALMKVIST, G .
JOURNAL OF ALGEBRA, 1974, 28 (03) :375-388
[3]  
[Anonymous], 1978, Graduate Texts in Mathematics
[4]  
Beilinson A., 1993, Adv. Soviet Math., V16, P1
[5]  
[Бруццо У Bruzzo Ugo], 2009, [Функциональный анализ и его приложения, Functional Analysis and Its Applications, Funktsional'nyi analiz i ego prilozheniya], V43, P22, DOI 10.4213/faa2940
[6]   Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures [J].
Carlos Marrero, Juan ;
Padron, Edith ;
Rodriguez-Olmos, Miguel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (16)
[7]   Equivariant Poisson cohomology and a spectral sequence associated with a moment map [J].
Ginzburg, VL .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1999, 10 (08) :977-1010
[8]  
Mackenzie K. C. H., 2005, LONDON MATH SOC LECT, V213
[9]  
Onishchik ArkadyL., 2004, Lectures on real semisimple Lie algebras and their representations
[10]  
Segal G., 1968, Publications mathematiques de l'I.H.E.S., V34, P129, DOI 10.1007/BF02684593