Integrative analyses of triple negative dysregulated transcripts compared with non-triple negative tumors and their functional and molecular interactions

被引:18
作者
Darbeheshti, Farzaneh [1 ,2 ]
Rezaei, Nima [3 ,4 ,5 ]
Amoli, Mahsa M. [6 ]
Mansoori, Yaser [7 ,8 ]
Bazzaz, Javad Tavakkoly [1 ]
机构
[1] Univ Tehran Med Sci, Sch Med, Dept Med Genet, Tehran, Iran
[2] Universal Sci Educ & Res Network, Breast Canc Assoc BrCA, Tehran, Iran
[3] Univ Tehran Med Sci, Res Ctr Immunodeficiencies, Childrens Med Ctr, Tehran, Iran
[4] Univ Tehran Med Sci, Sch Med, Dept Immunol, Tehran, Iran
[5] Universal Sci Educ & Res Network, NIIMA, Tehran, Iran
[6] Univ Tehran Med Sci, Metab Disorders Res Ctr, Endocrinol & Metab Mol Cellular Sci Inst, Tehran, Iran
[7] Fasa Univ Med Sci, Noncommunicable Dis Res Ctr, Fasa, Iran
[8] Fasa Univ Med Sci, Dept Med Genet, Fasa, Iran
关键词
bioinformatics analysis; differentially expressed gene; hub genes; microarray; miRNAs; triple-negative breast cancer; BREAST-CANCER; WEB SERVER; BASAL-LIKE; GENE; EXPRESSION; FOXC1; PROLIFERATION; CONTRIBUTES; MICRORNAS; CYTOSCAPE;
D O I
10.1002/jcp.28804
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Triple-negative (TN) tumors are a subtype of breast cancer with aggressive behaviors and limited targeted therapies. Microarray studies were not concerned with interactions and functional relations of dysregulated transcripts. Here, we aimed to conduct integrative strategy to analyze gene and miRNA available microarray data as well as bioinformatic analyses to catch a more inclusive picture of pivotal dysregulated transcripts and their interactions in TN tumors. Several online datasets and offline bioinformatic tools were used to detect differentially expressed (DE) transcripts, both protein and nonprotein coding, in TN compared with non-TN tumors and their functional and molecular interactions. Sixteen upregulated and 58 downregulated genes with a log fold change higher or equal to | 2 | were identified, including nine transcription factors. Coexpression network revealed EN1 as a hub gene, moreover Kaplan-Meier plotter survival analysis indicated that it was an appropriate prognostic marker for TN patients with breast cancer. Functional annotation analysis of protein-protein interaction network showed FOXM1 as an upexpressed and ESR1 as a downexpressed hub genes are suitable targets as far as antitumor protein therapy is concerned in TN breast cancers. The consensus analysis of two microRNA datasets revealed seven DE miRNAs. The gene-transcriptional factor (TF)-miRNA network revealed mir-135b and mir-29b are the hub nodes and involved in feedback loops with GATA3. This study suggests that dysregulated TFs and miRNAs have pivotal roles in regulation of TN oncotranscriptomic profile and might become both biomarkers and therapeutic targets.
引用
收藏
页码:22386 / 22399
页数:14
相关论文
共 63 条
[21]   microRNA-625 inhibits tumorigenicity by suppressing proliferation, migration and invasion in malignant melanoma [J].
Fang, Wei ;
Fan, Yibin ;
Fa, Zhenzong ;
Xu, Jinhua ;
Yu, Hongyu ;
Li, Pu ;
Gu, Julin .
ONCOTARGET, 2017, 8 (08) :13253-13263
[22]   The impact of the effectiveness of GATA3 as a prognostic factor in breast cancer [J].
Fararjeh, Abdul-Fattah Satah ;
Tu, Shih-Hsin ;
Chen, Li-Ching ;
Liu, Yun-Ru ;
Lin, Yen-Kuang ;
Chang, Hang-Lung ;
Chang, Hui-Wen ;
Wu, Chih-Hsiung ;
Hwang-Verslues, Wendy W. ;
Ho, Yuan-Soon .
HUMAN PATHOLOGY, 2018, 80 :219-230
[23]   Triple-Negative Breast Cancer [J].
Foulkes, William D. ;
Smith, Ian E. ;
Reis-Filho, Jorge S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (20) :1938-1948
[24]   Most mammalian mRNAs are conserved targets of microRNAs [J].
Friedman, Robin C. ;
Farh, Kyle Kai-How ;
Burge, Christopher B. ;
Bartel, David P. .
GENOME RESEARCH, 2009, 19 (01) :92-105
[25]   MicroRNA targeting specificity in mammals: Determinants beyond seed pairing [J].
Grimson, Andrew ;
Farh, Kyle Kai-How ;
Johnston, Wendy K. ;
Garrett-Engele, Philip ;
Lim, Lee P. ;
Bartel, David P. .
MOLECULAR CELL, 2007, 27 (01) :91-105
[26]   FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer [J].
Han, Bingchen ;
Qu, Ying ;
Jin, Yanli ;
Yu, Yi ;
Deng, Nan ;
Wawrowsky, Kolja ;
Zhang, Xiao ;
Li, Na ;
Bose, Shikha ;
Wang, Qiang ;
Sakkiah, Sugunadevi ;
Abrol, Ravinder ;
Jensen, Tor W. ;
Berman, Benjamin P. ;
Tanaka, Hisashi ;
Johnson, Jeffrey ;
Gao, Bowen ;
Hao, Jijun ;
Liu, Zhenqiu ;
Buttyan, Ralph ;
Ray, Partha S. ;
Hung, Mien-Chie ;
Giuliano, Armando E. ;
Cui, Xiaojiang .
CELL REPORTS, 2015, 13 (05) :1046-1058
[27]   TRRUST: a reference database of human transcriptional regulatory interactions [J].
Han, Heonjong ;
Shim, Hongseok ;
Shin, Donghyun ;
Shim, Jung Eun ;
Ko, Yunhee ;
Shin, Junha ;
Kim, Hanhae ;
Cho, Ara ;
Lee, Eiru Kim Tak ;
Kim, Hyojin ;
Kim, Kyungsoo ;
Yang, Sunmo ;
Bae, Dasom ;
Yun, Ayoung ;
Kim, Sunphil ;
Kim, Chan Yeong ;
Cho, Hyeon Jin ;
Kang, Byunghee ;
Shin, Susie ;
Lee, Insuk .
SCIENTIFIC REPORTS, 2015, 5
[28]   FOXC1 Regulates FGFR1 Isoform Switching to Promote Invasion Following TGFβ- Induced EMT [J].
Hopkins, Alex ;
Coatham, Mackenzie L. ;
Berry, Fred B. .
MOLECULAR CANCER RESEARCH, 2017, 15 (10) :1341-1353
[29]   miRTarBase: a database curates experimentally validated microRNA-target interactions [J].
Hsu, Sheng-Da ;
Lin, Feng-Mao ;
Wu, Wei-Yun ;
Liang, Chao ;
Huang, Wei-Chih ;
Chan, Wen-Ling ;
Tsai, Wen-Ting ;
Chen, Goun-Zhou ;
Lee, Chia-Jung ;
Chiu, Chih-Min ;
Chien, Chia-Hung ;
Wu, Ming-Chia ;
Huang, Chi-Ying ;
Tsou, Ann-Ping ;
Huang, Hsien-Da .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D163-D169
[30]   miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2 [J].
Hua, Kaiyao ;
Jin, Jiali ;
Zhao, Junyong ;
Song, Jialu ;
Song, Hongming ;
Li, Dengfeng ;
Maskey, Niraj ;
Zhao, Bingkun ;
Wu, Chenyang ;
Xu, Hui ;
Fang, Lin .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2016, 48 (05) :1997-2006