Polylactide cellulose-based nanocomposites

被引:113
|
作者
Vatansever, Emre [1 ]
Arslan, Dogan [2 ]
Nofar, Mohammadreza [1 ,2 ]
机构
[1] Istanbul Tech Univ, Polymer Sci & Technol Program, TR-34469 Istanbul, Turkey
[2] Istanbul Tech Univ, Met & Mat Engn Dept, Fac Chem & Met Engn, TR-34469 Istanbul, Turkey
关键词
Poly(lactic acid); Polylactide; PIA; Nanocomposite; Cellulose nanocrystal; Cellulose nanofiber; Bacterial cellulose; Blend; Foam; Review; POLY(LACTIC ACID) COMPOSITES; ACID/CELLULOSE NANOCRYSTAL FILMS; MODIFIED NANO-CELLULOSE; /MICRO-SIZED ADDITIVES; MECHANICAL-PROPERTIES; THERMAL-PROPERTIES; CRYSTALLIZATION BEHAVIOR; BACTERIAL CELLULOSE; SILVER NANOPARTICLES; BIONANOCOMPOSITE FILMS;
D O I
10.1016/j.ijbiomac.2019.06.205
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Among biopolymers, polylactide (PLA) is considered as the most appropriate substitute for the petroleum-based polymers which are widely used in various commodity and engineering applications. PLA, however, also suffers from series of shortcomings such as slow crystallization rate and low melt strength which result in poor process ability, formability and foamability which substantially limit its production and usage. Recently, the use of biobased/biodegradable cellulose nanoparticles such as cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BC) have been proposed to manufacture fully green PLA-based biocomposites while they could resolve some of the noted drawbacks of PIA. However, due to their high hydrophilicity and the presence of hydrogen bonding cellulose nanoparticles are not compatible with hydrophobic polymers. Therefore, the dispersion of these nanoparticles in thermoplastics still remains as the main challenge to process/develop their nanocomposites. This article reviews the studies conducted on these challenges of developing PLA cellulose-based nanocomposites including the difficulties of their processing and possible enhancements of their rheological, thermal, and mechanical properties. The investigations that have been conducted on PLA-CNC, PLA-CNF, and PLA-BC nanocomposites are separately discussed in this review article, while the studies on the development of PLA-nanocellulose blend nanocomposites and PLA-nanocellulose microcellular foams are also highlighted. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:912 / 938
页数:27
相关论文
共 50 条
  • [1] Polymer nanocomposites from cellulose-based materials
    Cai, Jie
    Shi, Zhuqun
    Zhang, Lina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [2] Cellulose-Based Bio- and Nanocomposites: A Review
    Kalia, Susheel
    Dufresne, Alain
    Cherian, Bibin Mathew
    Kaith, B. S.
    Averous, Luc
    Njuguna, James
    Nassiopoulos, Elias
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2011, 2011
  • [3] Bacterial Cellulose-Based Polymer Nanocomposites: A Review
    Revin, Viktor V.
    Liyaskina, Elena, V
    Parchaykina, Marina, V
    Kuzmenko, Tatyana P.
    Kurgaeva, Irina, V
    Revin, Vadim D.
    Ullah, Muhammad Wajid
    POLYMERS, 2022, 14 (21)
  • [4] Bacterial cellulose-based magnetic nanocomposites: A review
    Sriplai, Nipaporn
    Pinitsoontorn, Supree
    CARBOHYDRATE POLYMERS, 2021, 254
  • [5] Cellulose-based nanocomposites: Fiber production and characterization
    White, LA
    Delhom, CD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U474 - U474
  • [6] Synthesis of Cellulose-Based Hydrogel-Nanocomposites for Medical Applications
    Al-Tarawneh, Wala'a
    Hamadneh, Imad
    Tarawneh, Ola
    Al Najdawi, Ali
    POLYMERS, 2024, 16 (15)
  • [7] Preparation and Characterization of Bacterial Cellulose/Polylactide Nanocomposites
    Li, Zhao Qian
    Zhou, Xiao Dong
    Pei, Chong Hua
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2010, 49 (02) : 141 - 146
  • [8] Extraction of cellulose from pistachio shell and physical and mechanical characterisation of cellulose-based nanocomposites
    Movva, Mounika
    Kommineni, Ravindra
    MATERIALS RESEARCH EXPRESS, 2017, 4 (04):
  • [9] Mechanical and thermal properties of Moringa oleifera cellulose-based epoxy nanocomposites
    Ayrilmis, Nadir
    Ozdemir, Ferhat
    Nazarenko, Olga B.
    Visakh, P. M.
    JOURNAL OF COMPOSITE MATERIALS, 2019, 53 (05) : 669 - 675
  • [10] Effects of Carbonization on Electrophysical Properties of Cellulose-Based Nanocomposites with Triglycine Sulfate
    Hoai Thuong Nguyen
    Minh Thuyen Chau
    Nhan Thi Luu
    Nguyen Van Anh
    MATERIALS TRANSACTIONS, 2020, 61 (08) : 1580 - 1583