Cumulant theory of the unitary Bose gas: Prethermal and Efimovian dynamics

被引:19
作者
Colussi, V. E. [1 ]
Kurkjian, H. [2 ]
Van Regemortel, M. [2 ,3 ,4 ]
Musolino, S. [1 ]
van de Kraats, J. [1 ]
Wouters, M. [2 ]
Kokkelmans, S. J. J. M. F. [1 ]
机构
[1] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Univ Antwerp, TQC, Univ Pl 1, B-2610 Antwerp, Belgium
[3] NIST, Joint Quantum Inst, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Gaithersburg, MD 20899 USA
基金
欧盟地平线“2020”;
关键词
Quantum theory - Degrees of freedom (mechanics) - Bosons;
D O I
10.1103/PhysRevA.102.063314
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the quench of a degenerate ultracold Bose gas to the unitary regime, where interactions are as strong as allowed by quantum mechanics. We lay the foundation of a cumulant theory able to simultaneously capture the three-body Efimov effect and ergodic evolution. After an initial period of rapid quantum depletion, a universal prethermal stage is established, characterized by a kinetic temperature and an emergent Bogoliubov dispersion law, while the microscopic degrees of freedom remain far from equilibrium. Integrability is then broken by higher-order interaction terms in the many-body Hamiltonian, leading to a momentum-dependent departure from power law to decaying exponential behavior of the occupation numbers at large momentum. We also find signatures of the Efimov effect in the many-body dynamics and make a precise identification between the observed beating phenomenon and the binding energy of an Efimov trimer. Throughout the paper, our predictions for a uniform gas are quantitatively compared with experimental results for quenched unitary Bose gases in uniform potentials.
引用
收藏
页数:29
相关论文
共 92 条
[1]  
[Anonymous], 1987, STAT MECH, DOI DOI 10.1016/C2013-0-03799-1
[2]   Prethermalization -: art. no. 142002 [J].
Berges, J ;
Borsányi, S ;
Wetterich, C .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :142002-1
[3]  
Blaizot J.-P., 1985, Quantum theory of finite systems
[4]   Harmonically trapped four-boson system [J].
Blume, D. ;
Sze, M. W. C. ;
Bohn, J. L. .
PHYSICAL REVIEW A, 2018, 97 (03)
[5]   Universality in few-body systems with large scattering length [J].
Braaten, Eric ;
Hammer, H. -W. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 428 (5-6) :259-390
[6]   Universal Relations for Identical Bosons from Three-Body Physics [J].
Braaten, Eric ;
Kang, Daekyoung ;
Platter, Lucas .
PHYSICAL REVIEW LETTERS, 2011, 106 (15)
[7]   Universal Quantum Viscosity in a Unitary Fermi Gas [J].
Cao, C. ;
Elliott, E. ;
Joseph, J. ;
Wu, H. ;
Petricka, J. ;
Schaefer, T. ;
Thomas, J. E. .
SCIENCE, 2011, 331 (6013) :58-61
[8]   Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach [J].
Castin, Y ;
Dum, R .
PHYSICAL REVIEW A, 1998, 57 (04) :3008-3021
[9]   Feshbach resonances in ultracold gases [J].
Chin, Cheng ;
Grimm, Rudolf ;
Julienne, Paul ;
Tiesinga, Eite .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1225-1286
[10]   Signatures of resonance superfluidity in a quantum Fermi gas [J].
Chiofalo, ML ;
Kokkelmans, SJJMF ;
Milstein, JN ;
Holland, MJ .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4-904024