Gabor (super)frames with Hermite functions

被引:87
作者
Groechenig, Karlheinz [1 ]
Lyubarskii, Yurii [2 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Norwegian Univ Sci & Technol, Dept Math, N-7491 Trondheim, Norway
关键词
DENSITY THEOREMS; INTERPOLATION; FRAMES;
D O I
10.1007/s00208-009-0350-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate vector-valued Gabor frames (sometimes called Gabor superframes) based on Hermite functions H-n. Let h = (H-0, H-1, ... , H-n) be the vector of the first n + 1 Hermite functions. We give a complete characterization of all lattices Lambda subset of R-2 such that the Gabor system {e(2 pi i lambda 2t)h(t - lambda(1)) : lambda = (lambda(1), lambda(2)) is an element of Lambda} is a frame for L-2(R, Cn+1). As a corollary we obtain sufficient conditions for a single Hermite function to generate a Gabor frame and a new estimate for the lower frame bound. The main tools are growth estimates for the Weierstrass sigma-function, a new type of interpolation problem for entire functions on the Bargmann-Fock space, and structural results about vector-valued Gabor frames.
引用
收藏
页码:267 / 286
页数:20
相关论文
共 29 条
[1]  
AKHIEZER NI, 1990, ELEMENTS THEORY ELLI, P237
[2]   Multiplexing of signals using superframes [J].
Balan, R .
WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 :118-129
[3]  
Balan R., 1999, Contemp. Math, V247, P29
[4]  
Benedetto J., 1995, J. Fourier Anal. Appl., V1, P355, DOI 10.1007/s00041-001-4016-5
[5]   DENSITY THEOREMS FOR SAMPLING AND INTERPOLATION IN THE BARGMANN-FOCK SPACE .3. [J].
BREKKE, S ;
SEIP, K .
MATHEMATICA SCANDINAVICA, 1993, 73 (01) :112-126
[6]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[7]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[8]  
Feichtinger HG, 1998, APPL NUM HARM ANAL, P233
[9]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .1. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (02) :307-340
[10]  
Folland G.B., 1989, ANN MATH STUD, V122, P277