A hybrid photoelectrode with plasmonic Au@TiO2 nanoparticles for enhanced photoelectrochemical water splitting

被引:67
作者
Peerakiatkhajohn, Piangjai [1 ,2 ]
Butburee, Teera [1 ,2 ]
Yun, Jung-Ho [1 ,2 ]
Chen, Hongjun [1 ,2 ]
Richards, Ryan M. [3 ]
Wang, Lianzhou [1 ,2 ]
机构
[1] Univ Queensland, Sch Chem Engn, Nanomat Ctr, St Lucia, Qld 4072, Australia
[2] Univ Queensland, Australian Inst Bioengn & Nanotechnol, St Lucia, Qld 4072, Australia
[3] USA Natl Renewable Energy Lab, Dept Chem & Geochem, Colorado Sch Mines, Golden, CO 80401 USA
基金
澳大利亚研究理事会;
关键词
SOLAR-CELLS; FILMS; PHOTOANODES; CU2O/TIO2; HYDROGEN;
D O I
10.1039/c5ta04137f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein we present a new p-n heterojunction photoelectrode design utilizing Cu2O and TiO2-P25 loaded with only 1 wt% Au@TiO2 plasmonic core-shell structure for the photoelectrochemical (PEC) process. It is found that the photoelectrode with a sandwich-like layer design, i.e. TiO2-1 wt% Au@TiO2/Al2O3/Cu2O, not only promotes light harvesting but also improves charge carrier separation, resulting in drastically improved photocurrent density up to -4.34 mA cm(-2) at -0.2 V vs. Ag/AgCl under simulated AM 1.5 solar illumination, similar to 20 fold enhancement compared to that obtained from a TiO2-P25/Cu2O photoelectrode. It is also revealed that the photoelectrochemical performance is closely related to the Au nanoparticle size, induced by surface-enhanced scattering of the plasmonic nanoparticles. It should also be noted that these multilayer photoelectrodes also exhibit high stability through rational design of the PEC system to avoid the photocorrosion on Cu2O layers.
引用
收藏
页码:20127 / 20133
页数:7
相关论文
共 32 条
  • [2] Porous Titania Nanosheet/Nanoparticle Hybrids as Photoanodes for Dye-Sensitized Solar Cells
    Bai, Yang
    Xing, Zheng
    Yu, Hua
    Li, Zhen
    Amal, Rose
    Wang, Lianzhou
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) : 12058 - 12065
  • [3] Nano-plasmonic antennas in the near infrared regime
    Berkovitch, N.
    Ginzburg, P.
    Orenstein, M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (07)
  • [4] Step-wise controlled growth of metal@TiO2 core-shells with plasmonic hot spots and their photocatalytic properties
    Butburee, Teera
    Bai, Yang
    Pan, Jian
    Zong, Xu
    Sun, Chenghua
    Liu, Gang
    Wang, Lianzhou
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (32) : 12776 - 12784
  • [5] Nanostructured bilayered thin films in photoelectrochemical water splitting - A review
    Choudhary, Surbhi
    Upadhyay, Sumant
    Kumar, Pushpendra
    Singh, Nirupama
    Satsangi, Vibha R.
    Shrivastav, Rohit
    Dass, Sahab
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (24) : 18713 - 18730
  • [6] Electrical and Photoelectrochemical Properties of WO3/Si Tandem Photoelectrodes
    Coridan, Robert H.
    Shaner, Matthew
    Wiggenhorn, Craig
    Brunschwig, Bruce S.
    Lewis, Nathan S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (14) : 6949 - 6957
  • [7] Electrochemical Deposition and Formation Mechanism of Single-Crystalline Cu2O Octahedra on Aluminum
    Du, Q. T.
    Tan, J. S.
    Wang, Q. T.
    Li, C. Y.
    Liu, X. H.
    Cai, R. S.
    Ding, Y. H.
    Wang, Y. Q.
    [J]. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY, 2012, 2012
  • [8] Towards highly efficient photoanodes: boosting sunlight-driven semiconductor nanomaterials for water oxidation
    Gan, Jiayong
    Lu, Xihong
    Tong, Yexiang
    [J]. NANOSCALE, 2014, 6 (13) : 7142 - 7164
  • [9] Photoelectrochemical cells
    Grätzel, M
    [J]. NATURE, 2001, 414 (6861) : 338 - 344
  • [10] Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties
    Han, Xiguang
    Kuang, Qin
    Jin, Mingshang
    Xie, Zhaoxiong
    Zheng, Lansun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (09) : 3152 - +