SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis

被引:314
作者
Yang, Li
Liu, Ziqiang
Lu, Feng
Dong, Aiwu [1 ]
Huang, Hai
机构
[1] Fudan Univ, Sch Life Sci, Dept Biochem, State Key Lab Genet Engn, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai Inst Plant Physiol & Ecol, Natl Lab Plant Mol Genet, Shanghai 200032, Peoples R China
关键词
pri-miRNA processing; SERRATE; HYPONASTIC LEAVES1; Arabidopsis;
D O I
10.1111/j.1365-313X.2006.02835.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The Arabidopsis gene SERRATE (SE) controls leaf development, meristem activity, inflorescence architecture and developmental phase transition. It has been suggested that SE, which encodes a C2H2 zinc finger protein, may change gene expression via chromatin modification. Recently, SE has also been shown to regulate specific microRNAs (miRNAs), miR165/166, and thus control shoot meristem function and leaf polarity. However, it remains unclear whether and how SE modulates specific miRNA processing. Here we show that the se mutant exhibits some similar developmental abnormalities as the hyponastic leaves1 (hyl1) mutant. Since HYL1 is a nuclear double-stranded RNA-binding protein acting in the DICER-LIKE1 (DCL1) complex to regulate the first step of primary miRNA transcript (pri-miRNA) processing, we hypothesized that SE could play a previously unrecognized and general role in miRNA processing. Genetic analysis supports that SE and HYL1 act in the same pathway to regulate plant development. Consistently, SE is critical for the accumulation of multiple miRNAs and the trans-acting small interfering RNA (ta-siRNA), but is not required for sense post-transcriptional gene silencing. We further demonstrate that SE is localized in the nucleus and interacts physically with HYL1. Finally, we provide evidence that SE and HYL1 probably act with DCL1 in processing pri-miRNAs before HEN1 in miRNA biogenesis. In plants and animals, miRNAs are known to be processed in a stepwise manner from pri-miRNA. Our data strongly suggest that SE plays an important and general role in pri-miRNA processing, and it would be interesting to determine whether animal SE homologues may play similar roles in vivo.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 46 条
[1]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[2]   MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome [J].
Bao, N ;
Lye, KW ;
Barton, MK .
DEVELOPMENTAL CELL, 2004, 7 (05) :653-662
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs [J].
Baumberger, N ;
Baulcombe, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (33) :11928-11933
[5]   Arabidopsis HEN1:: A genetic link between endogenous miRNA controlling development and siRNA controlling transgene silencing and virus resistance [J].
Boutet, S ;
Vazquez, F ;
Liu, J ;
Béclin, C ;
Fagard, M ;
Gratias, A ;
Morel, JB ;
Crété, P ;
Chen, XM ;
Vaucheret, H .
CURRENT BIOLOGY, 2003, 13 (10) :843-848
[6]   GENETIC AND MOLECULAR CHARACTERIZATION OF EMBRYONIC MUTANTS IDENTIFIED FOLLOWING SEED TRANSFORMATION IN ARABIDOPSIS [J].
CASTLE, LA ;
ERRAMPALLI, D ;
ATHERTON, TL ;
FRANZMANN, LH ;
YOON, ES ;
MEINKE, DW .
MOLECULAR & GENERAL GENETICS, 1993, 241 (5-6) :504-514
[7]  
Chen CB, 2000, GENESIS, V26, P42, DOI 10.1002/(SICI)1526-968X(200001)26:1<42::AID-GENE7>3.0.CO
[8]  
2-J
[9]   microRNA biogenesis and function in plants [J].
Chen, XM .
FEBS LETTERS, 2005, 579 (26) :5923-5931
[10]   TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing [J].
Chendrimada, TP ;
Gregory, RI ;
Kumaraswamy, E ;
Norman, J ;
Cooch, N ;
Nishikura, K ;
Shiekhattar, R .
NATURE, 2005, 436 (7051) :740-744