Multimodal Multisensor Activity Annotation Tool

被引:11
作者
Barz, Michael [1 ]
Weber, Markus [1 ]
Moniri, Mohammad Mehdi [1 ]
Sonntag, Daniel [1 ]
机构
[1] German Res Ctr Artificial Intelligence DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbrucken, Germany
来源
UBICOMP'16 ADJUNCT: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING | 2016年
关键词
multimodal; multisensor; data capture; data annotation;
D O I
10.1145/2968219.2971459
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe a multimodal-multisensor annotation tool for physiological computing; for example mobile gesture-based interaction devices or health monitoring devices can be connected. It should be used as an expert authoring tool to annotate multiple video-based sensor streams for domain-specific activities. Resulting datasets can be used as supervised datasets for new machine learning tasks. Our tool provides connectors to commercially available sensor systems (e.g., Intel RealSense F200 3D camera, Leap Motion, and Myo) and a graphical user interface for annotation.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 6 条
[1]  
[Anonymous], P 6 INT C LANG RES E
[2]  
Dasiopoulou S, 2011, LECT NOTES ARTIF INT, V6050, P196, DOI 10.1007/978-3-642-20795-2_8
[3]  
Palotai Z., 2014, 2014 12th International Workshop on Content-Based Multimedia Indexing, P1
[4]   Video Interaction Tools: A Survey of Recent Work [J].
Schoeffmann, Klaus ;
Hudelist, Marco A. ;
Huber, Jochen .
ACM COMPUTING SURVEYS, 2015, 48 (01)
[5]  
Sonntag D, 2014, LECT NOTES COMPUT SC, V8534, P359, DOI 10.1007/978-3-319-07527-3_34
[6]   Wearable activity tracking in car manufacturing [J].
Stiefmeier, Thomas ;
Roggen, Daniel ;
Troester, Gerhard ;
Ogris, Georg ;
Lukowicz, Paul .
IEEE PERVASIVE COMPUTING, 2008, 7 (02) :42-50