A multisymplectic variational integrator for the nonlinear Schrodinger equation

被引:16
作者
Chen, JB
Qin, MZ
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China
[2] Acad Mil Med Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
关键词
nonlinear Schrodinger equation; multisymplectic structure; variational integrator; multisymplectic integrator;
D O I
10.1002/num.10021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The multisymplectic structure for the nonlinear Schrodinger equation is presented. Based on the multisymplectic structure, we derive a nine-point variational integrator from the discrete variational principle and a six-point multisymplectic integrator from the Preissman multisymplectic scheme. We,show that the two integrators are essentially equivalent. Therefore, we call it a multisymplectic variational integrator. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:523 / 536
页数:14
相关论文
共 16 条
[11]   Multisymplectic geometry, variational integrators, and nonlinear PDEs [J].
Marsden, JE ;
Patrick, GW ;
Shkoller, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (02) :351-395
[12]   SYMPLECTIC INTEGRATION OF HAMILTONIAN WAVE-EQUATIONS [J].
MCLACHLAN, R .
NUMERISCHE MATHEMATIK, 1994, 66 (04) :465-492
[13]   Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations [J].
Reich, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (02) :473-499
[14]  
Sanz- Serna J. M., 1994, NUMERICAL HAMILTONIA
[15]   Symplectic methods for the nonlinear Schrodinger equation [J].
Tang, YF ;
Vazquez, L ;
Zhang, F ;
PerezGarcia, VM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (05) :73-83
[16]   Symplectic methods for the Ablowitz-Ladik model [J].
Tang, YF ;
PerezGarcia, VM ;
Vazquez, L .
APPLIED MATHEMATICS AND COMPUTATION, 1997, 82 (01) :17-38