A multisymplectic variational integrator for the nonlinear Schrodinger equation

被引:16
作者
Chen, JB
Qin, MZ
机构
[1] Chinese Acad Sci, Inst Theoret Phys, Beijing 100080, Peoples R China
[2] Acad Mil Med Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
关键词
nonlinear Schrodinger equation; multisymplectic structure; variational integrator; multisymplectic integrator;
D O I
10.1002/num.10021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The multisymplectic structure for the nonlinear Schrodinger equation is presented. Based on the multisymplectic structure, we derive a nine-point variational integrator from the discrete variational principle and a six-point multisymplectic integrator from the Preissman multisymplectic scheme. We,show that the two integrators are essentially equivalent. Therefore, we call it a multisymplectic variational integrator. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:523 / 536
页数:14
相关论文
共 16 条
[1]  
[Anonymous], GTM
[3]  
Bridges TJ, 2001, ARCH RATION MECH AN, V156, P1, DOI 10.1007/s002050100123
[4]  
BRIDGES TJ, 2001, IN PRESS PHYS LETT A
[5]  
CHEN JB, 2001, IN PRESS COMPUTERS M
[6]  
FENG K, 1987, SPRINGER LECT NOTES, P1
[7]  
GARCIA PL, 1971, ARCH RATION MECH AN, V43, P101
[8]  
Hasegawa A., 1989, Optical Solitons in Fibers
[9]  
Lamb G.L., 1980, Pure Appl. Math.
[10]   Multisymplectic geometry, covariant Hamiltonians, and water waves [J].
Marsden, JE ;
Shkoller, S .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 125 :553-575