Variational Bayesian Blind Image Deconvolution: A review

被引:59
作者
Ruiz, Pablo [1 ,2 ]
Zhou, Xu [3 ]
Mateos, Javier [1 ,2 ]
Molina, Rafael [1 ,2 ]
Katsaggelos, Aggelos K. [4 ]
机构
[1] Univ Granada, Dept Ciencias Computac, E-18071 Granada, Spain
[2] Univ Granada, IAETS Ingn Informat & Telecomunicac, E-18071 Granada, Spain
[3] Beihang Univ, Image Proc Ctr, Beijing 100191, Peoples R China
[4] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
基金
中国国家自然科学基金;
关键词
Blind deconvolution; Image deblurring; Image restoration; Variational Bayesian; Bayesian modeling; RESTORATION; CAMERA; PARAMETER; REMOVAL; MODELS; SHAKEN;
D O I
10.1016/j.dsp.2015.04.012
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we provide a review of the recent literature on Bayesian Blind Image Deconvolution (BID) methods. We believe that two events have marked the recent history of BID: the predominance of Variational Bayes (VB) inference as a tool to solve BID problems and the increasing interest of the computer vision community in solving BID problems. VB inference in combination with recent image models like the ones based on Super Gaussian (SG) and Scale Mixture of Gaussians (SMG) representations have led to the use of very general and powerful tools to provide clear images from blurry observations. In the provided review emphasis is paid on VB inference and the use of SG and SMG models with coverage of recent advances in sampling methods. We also provide examples of current state of the art BID methods and discuss problems that very likely will mark the near future of BID. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 127
页数:12
相关论文
共 108 条
[81]   Inference algorithms and learning theory for Bayesian sparse factor analysis [J].
Rattray, Magnus ;
Stegle, Oliver ;
Sharp, Kevin ;
Winn, John .
INTERNATIONAL WORKSHOP ON STATISTICAL-MECHANICAL INFORMATICS 2009 (IW-SMI 2009), 2009, 197
[82]  
Robert C., 2013, Monte Carlo statistical methods
[83]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[84]   High-quality motion deblurring from a single image [J].
Shan, Qi ;
Jia, Jiaya ;
Agarwala, Aseem .
ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03)
[85]  
Sindelár O, 2013, J ELECTRON IMAGING, V22, DOI 10.1117/1.JEI.22.1.011003
[86]   Multichannel blind deconvolution of spatially misaligned images [J].
Sroubek, F ;
Flusser, J .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (07) :874-883
[87]   Robust Multichannel Blind Deconvolution via Fast Alternating Minimization [J].
Sroubek, Filip ;
Milanfar, Peyman .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :1687-1700
[88]   Richardson-Lucy Deblurring for Scenes under a Projective Motion Path [J].
Tai, Yu-Wing ;
Tan, Ping ;
Brown, Michael S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1603-1618
[89]   Correction of Spatially Varying Image and Video Motion Blur Using a Hybrid Camera [J].
Tai, Yu-Wing ;
Du, Hao ;
Brown, Michael S. ;
Lin, Stephen .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (06) :1012-1028
[90]   Space-variant blur deconvolution and denoising in the dual exposure problem [J].
Tallon, Miguel ;
Mateos, Javier ;
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
INFORMATION FUSION, 2013, 14 (04) :396-409