Compressive Strength and Bioactivity Properties of Photopolymerizable Hybrid Composite Hydrogels for Bone Tissue Engineering

被引:23
作者
Killion, John A. [1 ]
Geever, Luke M. [1 ]
Devine, Declan M. [1 ,2 ]
Farrell, Hugh [3 ]
Higginbotham, Clement L. [1 ]
机构
[1] Athlone Inst Technol, Mat Res Inst, Athlone, Westmeath, Ireland
[2] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Ctr Adv Orthopaed Studies, Boston, MA 02215 USA
[3] Athlone Inst Technol, BioSci Res Inst, Athlone, Westmeath, Ireland
关键词
drug release; beta-tricalcium phosphate; Antimicrobials; biomineralization; mechanical properties; hydrogels; MECHANICAL-PROPERTIES; IN-VITRO; POROUS SCAFFOLDS; GLYCOL HYDROGELS; REGENERATION; NANOPARTICLES; FABRICATION; GENTAMICIN;
D O I
10.1080/00914037.2013.854238
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The drug release capabilities of synthetic bone scaffolds have often been overlooked. In this study novel poly(ethylene) glycol and beta-tricalcium phosphate hydrogel composites were photopolymerized and evaluated in terms of mechanical strength, bioactivity, antimicrobial release profile, and the efficacy of released antimicrobials. Young's modulus values ranged between 4.36 and 8.70MPa. This increase was associated with the physical bonding interaction between polymer and bioceramic. Bioactivity was confirmed by the formation of globular crystals. Drug release studies showed the diffusion of vancomycin from hydrogel composites can be controlled by the hydrogels' three-dimensional structure. Moreover, vancomycin loaded samples showed activity against Staphylococcus aureus.
引用
收藏
页码:641 / 650
页数:10
相关论文
共 43 条
[1]  
[Anonymous], 1987, DEFINITION BIOMATERI
[2]   In vitro-in vivo characterization of gentamicin bone implants [J].
Baro, M ;
Sánchez, E ;
Delgado, A ;
Perera, A ;
Évora, C .
JOURNAL OF CONTROLLED RELEASE, 2002, 83 (03) :353-364
[3]   Synthetic bone scaffolds and fracture repair [J].
Carson, Joshua S. ;
Bostrom, Mathias P. G. .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2007, 38 :S33-S37
[4]   Biocompatible polymer materials: Role of protein-surface interactions [J].
Chen, Hong ;
Yuan, Lin ;
Song, Wei ;
Wu, Zhongkui ;
Li, Dan .
PROGRESS IN POLYMER SCIENCE, 2008, 33 (11) :1059-1087
[5]   Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula [J].
Cheng, Lijia ;
Ye, Feng ;
Yang, Ruina ;
Lu, Xiaofeng ;
Shi, Yujun ;
Li, Li ;
Fan, Hongsong ;
Bu, Hong .
ACTA BIOMATERIALIA, 2010, 6 (04) :1569-1574
[6]  
Chidambaram S, 2009, AAPS PHARMSCITECH, V10, P1158
[7]   Fabrication of PLGA Based Tissue Engineering Scaffolds via Photocuring and Salt Leaching Techniques [J].
Cicek, Cigdem ;
Cakmakci, Emrah ;
Kayaman-Apohan, Nilhan ;
Arslan, Mehmet ;
Kuruca, Serap Erdem .
INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2013, 62 (14) :719-725
[8]   Physico/chemical characterization and preliminary human histology assessment of a β-TCP particulate material for bone augmentation [J].
Coelho, Paulo G. ;
Coimbra, Maria E. ;
Ribeiro, Cristiane ;
Fancio, Elizabeth ;
Higa, Olga ;
Suzuki, Marcelo ;
Marincola, Mauro .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2009, 29 (07) :2085-2091
[9]   Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(L-lactide) - Hybrid membranes [J].
Deplaine, H. ;
Gomez Ribelles, J. L. ;
Gallego Ferrer, G. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (13) :1805-1812
[10]   Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration [J].
Diba, M. ;
Kharaziha, M. ;
Fathi, M. H. ;
Gholipourmalekabadi, M. ;
Samadikuchaksaraei, A. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (06) :716-723