Needlet approximation for isotropic random fields on the sphere

被引:10
作者
Le Gia, Quoc T. [1 ]
Sloan, Ian H. [1 ]
Wang, Yu Guang [1 ,2 ]
Womersley, Robert S. [1 ]
机构
[1] UNSW Australia, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China
关键词
Isotropic random fields; Sphere; Needlets; Gaussian; Multiscale; QUADRATURE-FORMULAS; HYPERINTERPOLATION; SPACES;
D O I
10.1016/j.jat.2017.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish a multiscale approximation for random fields on the sphere using spherical needlets a class of spherical wavelets. We prove that the semidiscrete needlet decomposition converges in mean and pointwise senses for weakly isotropic random fields on S-d, d >= 2. For numerical implementation, we construct a fully discrete needlet approximation of a smooth 2-weakly isotropic random field on Sd and prove that the approximation error for fully discrete needlets has the same convergence order as that for semidiscrete needlets. Numerical examples are carried out for fully discrete needlet approximations of Gaussian random fields and compared to a discrete version of the truncated Fourier expansion. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 116
页数:31
相关论文
共 41 条
[1]  
Adler RJ., 1981, GEOMETRY RANDOM FIEL
[2]   REGULARIZED LEAST SQUARES APPROXIMATIONS ON THE SPHERE USING SPHERICAL DESIGNS [J].
An, Congpei ;
Chen, Xiaojun ;
Sloan, Ian H. ;
Womersley, Robert S. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1513-1534
[3]   Kolmogorov-Chentsov Theorem and Differentiability of Random Fields on Manifolds [J].
Andreev, R. ;
Lang, A. .
POTENTIAL ANALYSIS, 2014, 41 (03) :761-769
[4]  
[Anonymous], EFFICIENT SPHERICAL
[5]  
[Anonymous], 2011, LONDON MATH SOC LECT
[6]  
[Anonymous], 2010, Handbook of Mathematical Functions
[7]  
[Anonymous], 2007, Pure Appl. Math.
[8]  
Aubin T., 1998, Springer Monographs in Mathematics
[9]  
BILLINGSLEY P., 1995, Probability and measure, V3rd
[10]   CESARO MEANS AND DEVELOPMENT OF MULTIPLIERS FOR SPHERICAL HARMONICS [J].
BONAMI, A ;
CLERC, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 183 (SEP) :223-263