Statistical Physics-Based Model of Solid Electrolyte Interphase Growth in Lithium Ion Batteries

被引:39
作者
Tahmasbi, A. A. [1 ]
Kadyk, T. [1 ,3 ]
Eikerling, M. H. [1 ,2 ]
机构
[1] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
[3] Braunschweig Univ Technol, Inst Energy & Proc Syst Engn, Braunschweig, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
CAPACITY FADE; AGING MECHANISMS; MATHEMATICAL-MODEL; NEGATIVE-ELECTRODE; GRAPHITE ANODES; SEI FORMATION; CELL; PARTICLE; SPECTROSCOPY; DEGRADATION;
D O I
10.1149/2.1581706jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The article presents a statistical physics-based model for the growth of the solid electrolyte interphase (SEI) in the negative electrode of lithium ion batteries. During battery operation, the SEI thickness grows by the reaction between lithium ions, electrons and solvent species on the surface of active particles at the negative electrode. The growth of the SEI layer causes a loss of lithium ions that induces capacity fade. In addition, it increases the ion transport resistance and decreases the total porosity. Our model employs a population balance formalism based on the Fokker-Planck Equation to describe the propagation of the particle density distribution function in the electrode. Structure-transforming processes at the level of individual particles are accounted for by using a set of kinetic and transport equations. These processes alter the particle density distribution function, and cause changes in battery performance. A parametric study of the model singles out the first moment of the initial SEI thickness distribution as the determining factor in predicting the capacity fade. The model-based treatment of experimental data allows analyzing processes that control SEI growth and extracting their controlling parameters. (C) The Author(s) 2017. Published by ECS.
引用
收藏
页码:A1307 / A1313
页数:7
相关论文
共 48 条
[11]   A Model for Predicting Capacity Fade due to SEI Formation in a Commercial Graphite/LiFePO4 Cell [J].
Ekstrom, Henrik ;
Lindbergh, Goran .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A1003-A1007
[12]   Modeling of degradation effects considering side reactions for a pouch type Li-ion polymer battery with carbon anode [J].
Fu, Rujian ;
Choe, Song-Yul ;
Agubra, Victor ;
Fergus, Jeffrey .
JOURNAL OF POWER SOURCES, 2014, 261 :120-135
[13]   Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior [J].
Guo, Meng ;
Sikha, Godfrey ;
White, Ralph E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) :A122-A132
[14]   Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery [J].
Haregewoin, Atetegeb Meazah ;
Leggesse, Ermias Girma ;
Jiang, Jyh-Chiang ;
Wang, Fu-Ming ;
Hwang, Bing-Joe ;
Lin, Shawn D. .
ELECTROCHIMICA ACTA, 2014, 136 :274-285
[15]  
Immanuel C. D., 2004, DYNAMICS CONTROL PRO, P365
[16]   Effects of Dissolved Transition Metals on the Electrochemical Performance and SEI Growth in Lithium-Ion Batteries [J].
Joshi, Tapesh ;
Eom, KwangSup ;
Yushin, Gleb ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (12) :A1915-A1921
[17]   Comparative study of the solid electrolyte interphase on graphite in full Li-ion battery cells using X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and electron microscopy [J].
Lee, Jung Tae ;
Nitta, Naoki ;
Benson, James ;
Magasinski, Alexandre ;
Fuller, Thomas F. ;
Yushin, Gleb .
CARBON, 2013, 52 :388-397
[18]  
Li YY, 2014, NAT MATER, V13, P1149, DOI [10.1038/NMAT4084, 10.1038/nmat4084]
[19]   A Comprehensive Capacity Fade Model and Analysis for Li-Ion Batteries [J].
Lin, Xianke ;
Park, Jonghyun ;
Liu, Lin ;
Lee, Yoonkoo ;
Sastry, A. M. ;
Lu, Wei .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) :A1701-A1710
[20]  
Linden D., 2002, HDB BATTERIES, P379