Long-time limits and occupation times for stable Fleming-Viot processes with decaying sampling rates

被引:1
作者
Kouritzin, Michael A. [1 ]
Le, Khoa [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2020年 / 56卷 / 04期
关键词
Fleming-Viot process; alpha-Stable process; Historical process; Occupation times; LARGE NUMBERS; STRONG LAW; MARTINGALE PROBLEM; THEOREMS;
D O I
10.1214/20-AIHP1051
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A class of Fleming-Viot processes with decaying sampling rates and alpha-stable motions that correspond to distributions with growing populations are introduced and analyzed. Almost sure long-time scaling limits for these processes are developed, addressing the question of long-time population distribution for growing populations. Asymptotics in higher orders are investigated. Convergence of particle location occupation and inhabitation time processes are also addressed and related by way of the historical process. The basic results and techniques allow general Feller motion/mutation and may apply to other measure-valued Markov processes.
引用
收藏
页码:2595 / 2620
页数:26
相关论文
共 34 条
[1]  
[Anonymous], 2002, Lecture Notes in Math
[2]   STRONG LIMIT-THEOREMS FOR GENERAL SUPERCRITICAL BRANCHING-PROCESSES WITH APPLICATIONS TO BRANCHING DIFFUSIONS [J].
ASMUSSEN, S ;
HERING, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (03) :195-212
[3]  
Athreya K. B., 2004, Branching processes
[4]  
Bass RF, 2001, LECT NOTES MATH, V1755, P195
[5]  
Billingsley P., 2013, CONVERGE PROBAB MEAS
[6]   On convergence determining and separating classes of functions [J].
Blount, Douglas ;
Kouritzin, Michael A. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (10) :1898-1907
[7]   Limit theorems for branching Markov processes [J].
Chen, Zhen-Qing ;
Shiozawa, Yuichi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :374-399
[8]  
Chung K. L., 1990, PROBABILITY ITS APPL, DOI 10.1007/978-1-4612-4480-6
[9]  
Dawson D.A., 1993, Lecture Notes in Math., V1541, P1, DOI DOI 10.1007/BFB0084190
[10]  
Dawson D.A., 1991, Mem. Amer. Math. Soc, V93, P179, DOI DOI 10.1090/MEM0/0454