Analysis of the effect of blade positions on the aerodynamic performances of wind turbine tower-blade system in halt states

被引:3
|
作者
Ke, Shitang [1 ,2 ]
Yu, Wei [1 ]
Wang, Tongguang [1 ]
Ge, Yaojun [2 ]
Tamura, Yukio [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Civil Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
[3] Tokyo Polytech Univ, Wind Engn Res Ctr, Atsugi, Kanagawa 2430297, Japan
基金
中国博士后科学基金;
关键词
wind turbine system; halt state; blade position; large eddy simulation; aerodynamic performance; parameter analysis; MODEL;
D O I
10.12989/was.2017.24.3.205
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The unsteady flow field disturbance between the blades and tower is one of the primary factors affecting the aerodynamic performance of wind turbine. Based on the research object of a 3MW horizontal axis wind turbine which was developed independently by Nanjing University of Aeronautics and Astronautics, numerical simulation on the aerodynamic performance of wind turbine system in halt state with blades in different position was conducted using large eddy simulation (LES) method. Based on the 3D unsteady numerical simulation results in a total of eight conditions (determined by the relative position with the tower during the complete rotation process of the blade), the characteristics of wind pressure distributions of the wind turbine system and action mechanism of surrounding flow field were analysed. The effect of different position of blades on the aerodynamic performance of wind turbine in halt state as well as the disturbance effect was evaluated. Results of the study showed that the halt position of blades had significant effect on the wind pressure distribution of the wind turbine system as well as the characteristics of flow around. Relevant conclusions from this study provided reference for the wind-resistant design of large scale wind turbine system in different halt states.
引用
收藏
页码:205 / 221
页数:17
相关论文
共 50 条
  • [31] Aerodynamic Effect of Winglet on NREL Phase VI Wind Turbine Blade
    Huque, Ziaul
    Chowdhury, Mahmood Sabria
    Lu, Haidong
    Kommalapati, Raghava Rao
    Energies, 2024, 17 (24)
  • [32] NUMERICAL SIMULATION OF ICING EFFECT ON AERODYNAMIC CHARACTERISTICS OF A WIND TURBINE BLADE
    LI, Yan
    Shi, Lei
    Guo, Wen-Feng
    Tagawa, Kotaro
    Zhao, Bin
    THERMAL SCIENCE, 2021, 25 (06): : 4643 - 4650
  • [33] EFFECT OF SINGLE AND MULTIPLE PROTUBERANCES ON THE AERODYNAMIC PERFORMANCE OF A WIND TURBINE BLADE
    Bapat, Archit
    Salunkhe, Pramod
    Varpe, Mahesh
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 10, 2021,
  • [34] The random response and extreme reaction analysis of wind turbine tower and blade
    Chen, Xiaobo
    Li, Jing
    Chen, Jianyun
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2010, 31 (08): : 1042 - 1048
  • [35] Large-scale wind turbine blade design and aerodynamic analysis
    Wang TongGuang
    Wang Long
    Zhong Wei
    Xu BoFeng
    Chen Li
    CHINESE SCIENCE BULLETIN, 2012, 57 (05): : 466 - 472
  • [36] Computation and analysis of aerodynamic performance of wind turbine blade based on bem
    Chen A.-J.
    Wang C.
    Jia Y.-Y.
    Liu Q.-K.
    Gongcheng Lixue/Engineering Mechanics, 2021, 38 : 264 - 268
  • [37] Large-scale wind turbine blade design and aerodynamic analysis
    WANG TongGuang1*
    2 China Aerodynamics Research and Development Center
    Science Bulletin, 2012, (05) : 466 - 472
  • [38] Analysis and study of the aerodynamic turbulent flow around a blade of wind turbine
    Khelladi, S.
    Triki, N. E. Bibi
    Nakoul, Z.
    Bessenouci, M. Z.
    8TH INTERNATIONAL CONFERENCE ON MATERIAL SCIENCES, CSM8-ISM5, 2014, 55 : 307 - 316
  • [39] Study on Modal Aerodynamic Damping Analysis Method for Wind Turbine Blade
    Chi Z.
    Xia H.
    Li D.
    Zhang X.
    Xia, Hongjian (hjxia@gdut.edu.cn), 2018, Chinese Mechanical Engineering Society (54): : 176 - 183
  • [40] Wind-induced response analysis of wind turbine tower considering the centrifugal stiffening effect of blade
    Chen, Xiao-Bo
    Li, Jing
    Chen, Jian-Yun
    Gongcheng Lixue/Engineering Mechanics, 2010, 27 (01): : 240 - 245