Universal cubic eigenvalue repulsion for random normal matrices

被引:20
作者
Oas, G
机构
[1] Ventura Hall, Stanford University, Stanford, CA
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 01期
关键词
D O I
10.1103/PhysRevE.55.205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random matrix models consisting of normal matrices, defined by the sole constraint [N-dagger,N]=0, will be explored. It is shown that cubic eigenvalue repulsion in the complex plane is universal with respect to the probability distribution of matrices. The density of eigenvalues, all correlation functions, and level spacing statistics are calculated. Normal matrix models offer more probability distributions amenable to analytical analysis than complex matrix models where only a model with a Gaussian distribution is solvable. The statistics of numerically generated eigenvalues from Gaussian distributed normal matrices are compared to the analytic results obtained and agreement is seen.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 21 条
[1]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[2]   CLOSED ORBITS AND REGULAR BOUND SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 349 (1656) :101-123
[3]  
BOHIGAS O, 1985, PHYS REV LETT, V52, P1
[4]   UNIVERSALITY OF THE CORRELATIONS BETWEEN EIGENVALUES OF LARGE RANDOM MATRICES [J].
BREZIN, E ;
ZEE, A .
NUCLEAR PHYSICS B, 1993, 402 (03) :613-627
[5]  
CHAU LL, 1992, PHYS LETT A, V167, P452, DOI 10.1016/0375-9601(92)90604-K
[6]  
Deif A. S., 1982, ADV MATRIX THEORY SC
[7]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[8]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[9]   UNIVERSALITY OF CUBIC-LEVEL REPULSION FOR DISSIPATIVE QUANTUM CHAOS [J].
GROBE, R ;
HAAKE, F .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2893-2896
[10]  
Haake F., 1991, QUANTUM SIGNATURES C