Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension

被引:54
作者
Anders, S.
Plenio, M. B.
Duer, W.
Verstraete, F.
Briegel, H. -J.
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] QOLS, Imperial Coll London, Blackett Lab, London SW7 2BW, England
[3] Univ London Imperial Coll Sci & Technol, Inst Math Sci, London SW7 2BW, England
[4] Acad Wissensch, Inst Quantenopt & Quateninformat Osterr, Innsbruck, Austria
[5] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
关键词
SERIES EXPANSIONS; ENTANGLEMENT;
D O I
10.1103/PhysRevLett.97.107206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a variational method for the approximation of ground states of strongly interacting spin systems in arbitrary geometries and spatial dimensions. The approach is based on weighted graph states and superpositions thereof. These states allow for the efficient computation of all local observables (e.g., energy) and include states with diverging correlation length and unbounded multiparticle entanglement. As a demonstration, we apply our approach to the Ising model on 1D, 2D, and 3D square lattices. We also present generalizations to higher spins and continuous-variable systems, which allows for the investigation of lattice field theories.
引用
收藏
页数:4
相关论文
共 18 条
  • [1] Entanglement properties of the harmonic chain
    Audenaert, K
    Eisert, J
    Plenio, MB
    Werner, RR
    [J]. PHYSICAL REVIEW A, 2002, 66 (04): : 14
  • [2] Persistent entanglement in arrays of interacting particles
    Briegel, HJ
    Raussendorf, R
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (05) : 910 - 913
  • [3] A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION
    BYRD, RH
    LU, PH
    NOCEDAL, J
    ZHU, CY
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) : 1190 - 1208
  • [4] Spin gases:: Quantum entanglement driven by classical kinematics -: art. no. 180502
    Calsamiglia, J
    Hartmann, L
    Dür, W
    Briegel, HJ
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (18)
  • [5] Entanglement in spin chains and lattices with long-range Ising-type interactions -: art. no. 097203
    Dür, W
    Hartmann, L
    Hein, M
    Lewenstein, M
    Briegel, HJ
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (09)
  • [6] INTRODUCTION TO THE BASICS OF ENTANGLEMENT THEORY IN CONTINUOUS-VARIABLE SYSTEMS
    Eisert, J.
    Plenio, M. B.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) : 479 - 506
  • [7] FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS
    FANNES, M
    NACHTERGAELE, B
    WERNER, RF
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) : 443 - 490
  • [8] HIGH-TEMPERATURE SERIES EXPANSIONS FOR THE (2 + 1)-DIMENSIONAL ISING-MODEL
    HE, HX
    HAMER, CJ
    OITMAA, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10): : 1775 - 1787
  • [9] Entropy, entanglement, and area: Analytical results for harmonic lattice systems
    Plenio, MB
    Eisert, J
    Dreissig, J
    Cramer, M
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (06)
  • [10] The density-matrix renormalization group
    Schollwöck, U
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 259 - 315