Noncoding RNAs in diabetes vascular complications

被引:55
作者
Beltrami, Cristina [1 ]
Angelini, Timothy G. [2 ]
Emanueli, Costanza [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Natl Heart & Lung Inst, London, England
[2] Royal Surrey Cty Hosp NHS Trust, Guildford, England
[3] Univ Bristol, Bristol Heart Inst, Sch Clin Sci, Bristol BS8 2HW, Avon, England
关键词
MicroRNAs; Long noncoding RNAs; Diabetes; Vascular cells; Bone marrow-derived cells; Extracellular vesicles; Biomarkers; SMOOTH-MUSCLE-CELLS; MICRORNA BIOGENESIS; EXTRACELLULAR VESICLES; CIRCULATING MICRORNAS; MOLECULAR-MECHANISMS; ENDOTHELIAL-CELLS; MEDIATED TRANSFER; MESSENGER-RNAS; ANGIOTENSIN-II; HEART-DISEASE;
D O I
10.1016/j.yjmcc.2014.12.014
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Diabetes mellitus is the most common metabolic disorder and is recognised as a dominant health threat of our time. Diabetes induces a widespread damage of the macro- and microvasculature in different organs and tissues and disrupts the endogenous vascular repair mechanisms, thus causing diffuse and severe complications. Moreover, diabetic patients respond poorly to surgical interventions aiming to "revascularise" (i.e., to restore blood flow supply) the ischemic myocardium or lower limbs. The molecular causes underpinning diabetes vascular complications are still underappreciated and druggable molecular targets for therapeutic interventions have not yet clearly emerged. Moreover, diabetes itself and diabetes complications are often silent killers, requiring new prognostic, diagnostic and predictive biomarkers for use in the clinical practice. Noncoding RNA (ncRNAs) are emerging as new fundamental regulators of gene expression. The small microRNAs (miRNAs, miRs) have opened the field capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. More recently, long ncRNAs (lncRNAs) have started to be actively investigated, leading to first exciting reports, which further suggest their important and yet largely unexplored contribution to vascular physiology and disease. This review introduces the different ncRNA types and focuses at the ncRNA roles in diabetes vascular complications. Furthermore, we discuss the potential value of ncRNAs as clinical biomarkers, and we examine the possibilities for therapeutic intervention targeting ncRNs in diabetes. This article is part of a Special Issue titled: Non-coding RNAs. (c) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 117 条
[1]  
Amer Diabet Assoc, 2005, DIABETES CARE, V28, pS37
[2]   The Kinase Akt1 Controls Macrophage Response to Lipopolysaccharide by Regulating MicroRNAs [J].
Androulidaki, Ariadne ;
Iliopoulos, Dimitrios ;
Arranz, Alicia ;
Doxaki, Christina ;
Schworer, Steffen ;
Zacharioudaki, Vassiliki ;
Margioris, Andrew N. ;
Tsichlis, Philip N. ;
Tsatsanis, Christos .
IMMUNITY, 2009, 31 (02) :220-231
[3]   Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma [J].
Arroyo, Jason D. ;
Chevillet, John R. ;
Kroh, Evan M. ;
Ruf, Ingrid K. ;
Pritchard, Colin C. ;
Gibson, Donald F. ;
Mitchell, Patrick S. ;
Bennett, Christopher F. ;
Pogosova-Agadjanyan, Era L. ;
Stirewalt, Derek L. ;
Tait, Jonathan F. ;
Tewari, Muneesh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (12) :5003-5008
[4]   Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy [J].
Bang, Claudia ;
Batkai, Sandor ;
Dangwal, Seema ;
Gupta, Shashi Kumar ;
Foinquinos, Ariana ;
Holzmann, Angelika ;
Just, Annette ;
Remke, Janet ;
Zimmer, Karina ;
Zeug, Andre ;
Ponimaskin, Evgeni ;
Schmiedl, Andreas ;
Yin, Xiaoke ;
Mayr, Manuel ;
Halder, Rashi ;
Fischer, Andre ;
Engelhardt, Stefan ;
Wei, Yuanyuan ;
Schober, Andreas ;
Fiedler, Jan ;
Thum, Thomas .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (05) :2136-2146
[5]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[6]   Biogenesis and Regulation of Cardiovascular MicroRNAs [J].
Bauersachs, Johann ;
Thum, Thomas .
CIRCULATION RESEARCH, 2011, 109 (03) :334-347
[7]   Definitions, Epidemiology, Clinical Presentation and Prognosis [J].
Becker, F. ;
Robert-Ebadi, H. ;
Ricco, J. -B. ;
Setacci, C. ;
Cao, P. ;
de Donato, G. ;
Eckstein, H. H. ;
de Rango, P. ;
Diehm, N. ;
Schmidli, J. ;
Teraa, M. ;
Mall, F. L. ;
Dick, F. ;
Davies, A. H. ;
Lepantalo, M. ;
Apelqvist, J. .
EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2011, 42 :S4-S12
[8]   Identification and Initial Functional Characterization of a Human Vascular Cell-Enriched Long Noncoding RNA [J].
Bell, Robert D. ;
Long, Xiaochun ;
Lin, Mingyan ;
Bergmann, Jan H. ;
Nanda, Vivek ;
Cowan, Sarah L. ;
Zhou, Qian ;
Han, Yu ;
Spector, David L. ;
Zheng, Deyou ;
Miano, Joseph M. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2014, 34 (06) :1249-1259
[9]   Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p [J].
Broadbent, Helen M. ;
Peden, John F. ;
Lorkowski, Stefan ;
Goel, Anuj ;
Ongen, Halit ;
Green, Fiona ;
Clarke, Robert ;
Collins, Rory ;
Franzosi, Maria Grazia ;
Tognoni, Gianni ;
Seedorf, Udo ;
Rust, Stephan ;
Eriksson, Per ;
Hamsten, Anders ;
Farrall, Martin ;
Watkins, Hugh .
HUMAN MOLECULAR GENETICS, 2008, 17 (06) :806-814
[10]   MicroRNA-503 and the Extended MicroRNA-16 Family in Angiogenesis [J].
Caporali, Andrea ;
Emanueli, Costanza .
TRENDS IN CARDIOVASCULAR MEDICINE, 2011, 21 (06) :162-166