The role of metric regularity in state constrained optimal control

被引:0
作者
Vinter, Richard [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2BT, England
来源
2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8 | 2005年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to show that a common set of analytical tools (conditions for metric regularity of the state constraint) resolve a number of important questions in state constrained optimal control. On the one hand, they lead to simple, directly verifiable criteria for non-degeneracy of the state constrained Maximum Principle. On the other hand, they make possible the characterization of the value function as a unique solution to the Hamilton-Jacobi equation, in an appropriate generalized sense, for problems with state and end-point constraints.
引用
收藏
页码:262 / 265
页数:4
相关论文
共 15 条
[1]   Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints [J].
Arutyunov, AV ;
Aseev, SM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (03) :930-952
[2]  
BARDI M, 1997, OPTIAM CONTROL VISCO
[3]   Feedback in state constrained optimal control [J].
Clarke, FH ;
Rifford, L ;
Stern, RJ .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (05) :97-133
[4]   State constrained feedback stabilization [J].
Clarke, FH ;
Stern, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) :422-441
[5]  
CLARKE FH, 1998, GRAUDATE TEXTS MATH, V178
[6]   WHEN IS THE MAXIMUM PRINCIPLE FOR STATE CONSTRAINED PROBLEMS NONDEGENERATE [J].
FERREIRA, MMA ;
VINTER, RB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (02) :438-467
[7]  
FORCELLINI F, 1999, DIFFERENTIAL INTEGRA, V12, P49
[8]   Filippov's and Filippov-Wazewski's theorems on closed domains [J].
Frankowska, H ;
Rampazzo, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 161 (02) :449-478
[9]   Existence of Neighboring Feasible Trajectories: Applications to Dynamic Programming for State-Constrained Optimal Control Problems [J].
H. Frankowska ;
R. B. Vinter .
Journal of Optimization Theory and Applications, 2000, 104 (1) :20-40
[10]   LOWER SEMICONTINUOUS SOLUTIONS OF HAMILTON-JACOBI-BELLMAN EQUATIONS [J].
FRANKOWSKA, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (01) :257-272