Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion

被引:347
作者
Lee, Y. S. [1 ,2 ,3 ]
Zhang, W. [1 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Welding Engn Program, Columbus, OH 43221 USA
[2] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN 37932 USA
[3] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
关键词
Powder bed additive manufacturing; Heat transfer and fluid flow; Free surface; Solidification microstructure; Nickel base superalloy; Laser processing; FINITE-ELEMENT SIMULATION; PROCESSING PARAMETERS; DEPOSITION; GROWTH;
D O I
10.1016/j.addma.2016.05.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser-Powder Bed Fusion (L-PBF), an additive manufacturing process, produces a distinctive microstructure that closely resembles the weld metal microstructure but at a much finer scale. The solidification parameters, particularly temperature gradient and solidification rate, are important to study the as-built microstructure. In the present study, a computational framework with meso-scale resolution is developed for L-PBF of Inconel (R) 718 (IN718), a Ni-base superalloy. The framework combines a powder packing model based on Discrete Element Method and a 3-D transient heat and fluid flow simulation. The latter, i.e., the molten pool model, captures the interaction between laser beam and individual powder particles including free surface evolution, surface tension and evaporation. The solidification parameters, calculated from the temperature fields, are used to assess the solidification morphology and grain size using existing theoretical models. The IN718 coupon built by L-PBF are characterized using optical and scanning electron microscopies. The experimental data of molten pool size and solidification microstructure are compared to the corresponding simulation results. Published by Elsevier B.V.
引用
收藏
页码:178 / 188
页数:11
相关论文
共 43 条
  • [1] Allmen M.v., 1987, Laser-Beam Interactions with Materials: Physical Principles and Applications, V2nd
  • [2] [Anonymous], P IMECHE B
  • [3] [Anonymous], J PHYS D
  • [4] [Anonymous], FLOW3D VERSION 11 0
  • [5] Babu SS, 2015, MATER SCI TECH-LOND, V31, P881, DOI 10.1179/0267083615Z.000000000929
  • [6] Solidification Map of a Nickel-Base Alloy
    Blecher, J. J.
    Palmer, T. A.
    DebRoy, T.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2014, 45A (04): : 2142 - 2151
  • [7] Site specific control of crystallographic grain orientation through electron beam additive manufacturing
    Dehoff, R. R.
    Kirka, M. M.
    Sames, W. J.
    Bilheux, H.
    Tremsin, A. S.
    Lowe, L. E.
    Babu, S. S.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (08) : 931 - 938
  • [8] Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed
    Foroozmehr, Ali
    Badrossamay, Mohsen
    Foroozmehr, Ehsan
    Golabi, Sa'id
    [J]. MATERIALS & DESIGN, 2016, 89 : 255 - 263
  • [9] Modeling analysis of hybrid laser-arc welding of single-crystal nickel-base superalloys
    Gao, Zhiguo
    Ojo, O. A.
    [J]. ACTA MATERIALIA, 2012, 60 (6-7) : 3153 - 3167
  • [10] Gäumann M, 2001, ACTA MATER, V49, P1051, DOI 10.1016/S1359-6454(00)00367-0