On the use of particle swarm optimization with Multimodal functions

被引:0
作者
Esquivel, SC [1 ]
Coello, CAC [1 ]
机构
[1] Univ Nacl San Luis, LIDIC, RA-5700 San Luis, Argentina
来源
CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present two hybrid particle swarm optimization (PSO) algorithms that incorporate a mutation operator similar to the one used with evolutionary algorithms. We study our hybridized PSO algorithm with two schemes called g - best and l - best, and we apply them to multimodal functions. The proposed approaches are validated using test functions taken from the specialized literature, and our results are compared with respect to those obtained by other highly competitive PSO algorithms. Our comparative study indicates that the hybridization of PSO with a non-uniform mutation operator significantly improves its performance when dealing with multimodal functions.
引用
收藏
页码:1130 / 1136
页数:7
相关论文
共 16 条
[1]  
ANGELINE PJ, 1998, INT C EV COMP PISC N
[2]  
Angline P, 1998, EVOLUTIONARY OPTIMIZ, V1447, P601, DOI DOI 10.1007/BFB0040753
[3]  
Branke J., 2002, EVOLUTIONARY OPTIMIZ
[4]  
CARLISLE AJ, 2002, THESIS AUBURN U
[5]  
Eberhart R, 1995, MHS 95 P 6 INT S MIC, P39, DOI 10.1109/MHS.1995.494215
[6]   Particle swarm optimization with Gaussian mutation [J].
Higashi, N ;
Iba, H .
PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, :72-79
[7]  
Kenndy J., 1995, P IEEE INT C NEUR NE, V4, P1942, DOI [10.4018/ijmfmp.2015010104, DOI 10.4018/IJMFMP.2015010104]
[8]  
Kennedy J., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1931, DOI 10.1109/CEC.1999.785509
[9]  
KENNEDY J, 2002, C EV COMP HON HAW PI
[10]  
Kennedy J., 2001, SWARM INTELLIGENCE