Homeomorphisms on minimal Cantor sets in the unimodal setting

被引:0
作者
Alvin, Lori [1 ]
机构
[1] Furman Univ, Dept Math, 3300 Poinsett Hwy, Greenville, SC 29613 USA
关键词
Unimodal maps; Kneading sequences; Homeomorphisms; Cantor sets; Shift spaces; OMEGA-LIMIT SETS;
D O I
10.1016/j.topol.2020.107292
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the structure of the kneading sequences of unimodal maps for which the omega-limit set of the turning point is a Cantor set and the map restricted to that omega-limit set is a minimal homeomorphism. We provide several characterizations of unimodal maps with these homeomorphic restrictions in terms of the kneading sequences and the associated shift spaces generated by the kneading sequences. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 11 条
[1]  
Alvin L., 2019, CHARACTERIZATION UNI
[2]   Omega-limit sets for shift spaces and unimodal maps [J].
Alvin, Lori ;
Ormes, Nicholas .
TOPOLOGY AND ITS APPLICATIONS, 2016, 209 :33-45
[3]   Uniformly recurrent sequences and minimal Cantor omega-limit sets [J].
Alvin, Lori .
FUNDAMENTA MATHEMATICAE, 2015, 231 (03) :273-284
[4]  
Anusic A., 2019, ARXIV191003361
[5]   On the ω-limit sets of tent maps [J].
Barwell, Andrew D. ;
Davies, Gareth ;
Good, Chris .
FUNDAMENTA MATHEMATICAE, 2012, 217 (01) :35-54
[6]   A characterization of ω-limit sets for piecewise monotone maps of the interval [J].
Barwell, Andrew D. .
FUNDAMENTA MATHEMATICAE, 2010, 207 (02) :161-174
[7]  
Brucks K., 2004, LONDON MATH SOC STUD, V62
[8]   HOMEOMORPHIC RESTRICTIONS OF SMOOTH ENDOMORPHISMS OF AN INTERVAL [J].
BRUCKS, KM ;
OTEROESPINAR, MV ;
TRESSER, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :429-439
[9]  
Bruin H., 1999, CONTEMP MATH, V246, P47
[10]  
BRUIN H, 2011, TOPOLOGY P, V37, P459