A genetic fuzzy system for unstable angina risk assessment

被引:18
作者
Dong, Wei [1 ]
Huang, Zhengxing [2 ]
Ji, Lei [3 ]
Duan, Huilong [2 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Cardiol, Beijing, Peoples R China
[2] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou 310008, Zhejiang, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, IT Dept, Beijing, Peoples R China
来源
BMC MEDICAL INFORMATICS AND DECISION MAKING | 2014年 / 14卷
关键词
Unstable angina risk assessment; Fuzzy association rule mining; Genetic algorithm; SUBGROUP DISCOVERY; PREDICTORS; RULES; TIMI;
D O I
10.1186/1472-6947-14-12
中图分类号
R-058 [];
学科分类号
摘要
Background: Unstable Angina (UA) is widely accepted as a critical phase of coronary heart disease with patients exhibiting widely varying risks. Early risk assessment of UA is at the center of the management program, which allows physicians to categorize patients according to the clinical characteristics and stratification of risk and different prognosis. Although many prognostic models have been widely used for UA risk assessment in clinical practice, a number of studies have highlighted possible shortcomings. One serious drawback is that existing models lack the ability to deal with the intrinsic uncertainty about the variables utilized. Methods: In order to help physicians refine knowledge for the stratification of UA risk with respect to vagueness in information, this paper develops an intelligent system combining genetic algorithm and fuzzy association rule mining. In detail, it models the input information's vagueness through fuzzy sets, and then applies a genetic fuzzy system on the acquired fuzzy sets to extract the fuzzy rule set for the problem of UA risk assessment. Results: The proposed system is evaluated using a real data-set collected from the cardiology department of a Chinese hospital, which consists of 54 patient cases. 9 numerical patient features and 17 categorical patient features that appear in the data-set are selected in the experiments. The proposed system made the same decisions as the physician in 46 (out of a total of 54) tested cases (85.2%). Conclusions: By comparing the results that are obtained through the proposed system with those resulting from the physician's decision, it has been found that the developed model is highly reflective of reality. The proposed system could be used for educational purposes, and with further improvements, could assist and guide young physicians in their daily work.
引用
收藏
页数:10
相关论文
共 17 条
[1]   Fuzzy time series prediction using hierarchical clustering algorithms [J].
Bang, Young-Keun ;
Lee, Chul-Heui .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) :4312-4325
[2]  
Bellman R. E., 1971, Decision-making in a fuzzy environment, DOI 10.1287/mnsc.17.4.B141
[3]   Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation results from an international trial of 9461 patients [J].
Boersma, E ;
Pieper, KS ;
Steyerberg, EW ;
Wilcox, RG ;
Chang, WC ;
Lee, KL ;
Akkerhuis, KM ;
Harrington, RA ;
Deckers, JW ;
Armstrong, PW ;
Lincoff, AM ;
Califf, RM ;
Topol, EJ ;
Simoons, ML .
CIRCULATION, 2000, 101 (22) :2557-2567
[4]   A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data [J].
Buczak, Anna L. ;
Koshute, Phillip T. ;
Babin, Steven M. ;
Feighner, Brian H. ;
Lewis, Sheryl H. .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2012, 12
[5]   Fuzzy-XCS: A Michigan genetic fuzzy system [J].
Casillas, Jorge ;
Carse, Brian ;
Bull, Larry .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (04) :536-550
[6]   Evolutionary fuzzy rule induction process for subgroup discovery:: A case study in marketing [J].
del Jesus, Maria Jose ;
Gonzalez, Pedro ;
Herrera, Francisco ;
Mesonero, Mikel .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (04) :578-592
[7]   A systematic approach to the assessment of fuzzy association rules [J].
Dubois, Didier ;
Huellermeier, Eyke ;
Prade, Henri .
DATA MINING AND KNOWLEDGE DISCOVERY, 2006, 13 (02) :167-192
[8]   Validation of the TIMI risk score in Chinese patients presenting to the emergency department with chest pain [J].
Graham, Colin A. ;
Tsay, Selena X. H. ;
Rotheray, Kathleen R. ;
Rainer, Timothy H. .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2013, 168 (01) :597-598
[9]   Predictors of hospital mortality in the global registry of acute coronary events [J].
Granger, CB ;
Goldberg, RJ ;
Dabbous, O ;
Pieper, KS ;
Eagle, KA ;
Cannon, CP ;
Van de Werf, F ;
Avezum, A ;
Goodman, SG ;
Flather, MD ;
Fox, KAA .
ARCHIVES OF INTERNAL MEDICINE, 2003, 163 (19) :2345-2353
[10]   Hierarchical fuzzy clustering decision tree for classifying recipes of ion implanter [J].
Horng, Shih-Cheng ;
Yang, Feng-Yi ;
Lin, Shieh-Shing .
EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (01) :933-940