A spline-based semiparametric sieve likelihood method for over-dispersed panel count data

被引:14
作者
Hua, Lei [1 ]
Zhang, Ying [2 ]
Tu, Wanzhu [2 ]
机构
[1] Vertex Pharmaceut Inc, Boston, MA 02210 USA
[2] Indiana Univ, Dept Biostat, Indianapolis, IN 46202 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2014年 / 42卷 / 02期
关键词
Counting process; Gamma-Frailty; monotone B-splines; over-dispersion; panel count data; semiparametric model; REGRESSION-ANALYSIS; MODEL; TIME; CHLAMYDIA; TESTS; RISK;
D O I
10.1002/cjs.11208
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we study a Gamma-Frailty inhomogeneous Poisson process model for analysing over-dispersed panel count data. A cubic B-spline function is used to approximate the logarithm of the baseline mean function in the semiparametric proportional mean model. The regression parameters and spline coefficients are jointly estimated by maximizing a spline-based sieve pseudo-likelihood and by replacing the nuisance over-dispersion parameter with its moment estimate. The asymptotic properties of the proposed maximum pseudo likelihood estimator, including its consistency, convergence rate and the asymptotic normality of the estimated regression parameters, are thoroughly studied using modern empirical process theory. A spline-based least-squares standard error estimator is developed to facilitate robust inference for the regression parameters. Simulation studies are conducted to investigate finite sample performance of the proposed method and robustness of the Gamma-Frailty inhomogeneous Poisson process model. Finally, for illustration, the method is used to analyse data from an observational study of sexually transmitted infection (STI) in young women. The Canadian Journal of Statistics 42: 217-245; 2014 (c) 2014 Statistical Society of Canada Resume Dans cet article, les auteurs etudient un modele pour des donnees de denombrement surdispersees en panel base sur un processus de Poisson inhomogene a fragilite gamma. Ils utilisent une B-spline cubique pour approximer le logarithme de la fonction de reference dans le modele semiparametrique a moyennes proportionnelles. Les parametres de regression et les coefficients des splines sont estimes conjointement en maximisant la pseudo-vraisemblance en tamis et en remplacant le parametre nuisible de surdispersion par son estimateur des moments. Les proprietes asymptotiques de l'estimateur au maximum de pseudo-vraisemblance propose, y compris sa convergence, son taux de convergence et la normalite asymptotique des parametres de regression estimes, sont examines en detail a l'aide de la theorie moderne des processus empiriques. Les auteurs developpent un estimateur aux moindres carres de l'ecart-type fonde sur les splines qui facilite l'inference robuste des parametres de regression. Ils procedent a des etudes de simulation pour examiner la performance de la methode proposee avec un echantillon fini, ainsi que la robustesse du modele de Poisson inhomogene a fragilite gamma. Ils illustrent egalement leur methode par l'analyse de donnees provenant d'une etude d'observation portant sur les infections transmissibles sexuellement (ITS) chez les jeunes femmes. La revue canadienne de statistique 42: 217-245; 2014 (c) 2014 Societe statistique du Canada
引用
收藏
页码:217 / 245
页数:29
相关论文
共 29 条
  • [1] Repeated Chlamydia trachomatis Genital Infections in Adolescent Women
    Batteiger, Byron E.
    Tu, Wanzhu
    Ofner, Susan
    Van Der Pol, Barbara
    Stothard, Diane R.
    Orr, Donald P.
    Katz, Barry P.
    Fortenberry, J. Dennis
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2010, 201 (01) : 42 - 51
  • [2] Boor C.D., 2001, A Practical Guide to Splines
  • [4] Byar D., 1980, UROLOGY, V10, P556
  • [5] Centers for Disease Control and Prevention, 2006, MMWR Recomm Rep, V55, P1
  • [6] SOME REMARKS ON OVERDISPERSION
    COX, DR
    [J]. BIOMETRIKA, 1983, 70 (01) : 269 - 274
  • [7] Cox DR., 1989, Analysis of Binary Data, V2nd ed.
  • [8] DIAGNOSTICS FOR OVERDISPERSION
    GANIO, LM
    SCHAFER, DW
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (419) : 795 - 804
  • [9] NONPARAMETRIC MAXIMUM-LIKELIHOOD ESTIMATION BY THE METHOD OF SIEVES
    GEMAN, S
    HWANG, CR
    [J]. ANNALS OF STATISTICS, 1982, 10 (02) : 401 - 414
  • [10] Assessing Sexual Attitudes and Behaviors of Young Women: A Joint Model with Nonlinear Time Effects, Time Varying Covariates, and Dropouts
    Ghosh, Pulak
    Tu, Wanzhu
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 474 - 485