Population Monotonicity in Newsvendor Games

被引:13
作者
Chen, Xin [1 ]
Gao, Xiangyu [2 ]
Hu, Zhenyu [3 ,4 ]
Wang, Qiong [1 ]
机构
[1] Univ Illinois, Dept Ind & Enterprise Syst Engn, Urbana, IL 61801 USA
[2] Chinese Univ Hong Kong, CUHK Business Sch, Dept Decis Sci & Managerial Econ, Hong Kong, Peoples R China
[3] Natl Univ Singapore, NUS Business Sch, Singapore 119245, Singapore
[4] Natl Univ Singapore, Inst Operat Res & Analyt, Singapore 119245, Singapore
基金
美国国家科学基金会;
关键词
inventory centralization; cooperative games; population monotonicity; log-concavity; duality; INVENTORY CENTRALIZATION; COST ALLOCATION; COOPERATION;
D O I
10.1287/mnsc.2018.3053
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
A newsvendor game allows the players to collaborate on inventory pooling and share the resulting total cost. There are several possible ways to allocate the cost. Previous studies have focused on the core of the game. It is known that the core of the newsvendor game is nonempty, and one can use duality theory in stochastic programming to construct an allocation-referred to as the dual-based allocation-belonging to the core. Yet, an allocation that lies in the core does not necessarily guarantee the unhindered formation of a coalition, as some existing members' allocated costs may increase when new members are added in the process. In this work, we use the concept of population monotonic allocation scheme (PMAS), which requires the cost allocated to every member of a coalition to decrease as the coalition grows, to study allocation schemes in a growing population. We show that when the demands faced by the newsvendors are independent, log-concavity of their distributions is sufficient to guarantee the existence of a PMAS. Specifically, for continuous demands, log-concavity ensures that the game is convex, which in turn implies a PMAS exists. We also show that under the same condition the dual-based allocation scheme is a PMAS. For discrete and log-concave demands, however, the game may no longer be convex, but we manage to show that, even so, the dual-based allocation scheme is a PMAS. When the demands are dependent, the game is in general not convex. We derive a sufficient condition based on the dependence structure, measured by the copula, to ensure that the dual-based allocation scheme is still a PMAS. We also include an example of a game with no PMAS.
引用
收藏
页码:2142 / 2160
页数:19
相关论文
共 46 条
[1]   OPTIMAL INVENTORY POLICY [J].
Arrow, Kenneth J. ;
Harris, Theodore ;
Marschak, Jacob .
ECONOMETRICA, 1951, 19 (03) :250-272
[2]   Log-concave probability and its applications [J].
Bagnoli, M ;
Bergstrom, T .
ECONOMIC THEORY, 2005, 26 (02) :445-469
[3]   Duality Approaches to Economic Lot-Sizing Games [J].
Chen, Xin ;
Zhang, Jiawei .
PRODUCTION AND OPERATIONS MANAGEMENT, 2016, 25 (07) :1203-1215
[4]   Cost allocation of capacity investment games [J].
Chen, Xin ;
Chen, Zhisong .
NAVAL RESEARCH LOGISTICS, 2013, 60 (06) :512-523
[5]   Inventory Centralization Games with Price-Dependent Demand and Quantity Discount [J].
Chen, Xin .
OPERATIONS RESEARCH, 2009, 57 (06) :1394-1406
[6]   A Stochastic Programming Duality Approach to Inventory Centralization Games [J].
Chen, Xin ;
Zhang, Jiawei .
OPERATIONS RESEARCH, 2009, 57 (04) :840-851
[7]  
Choi T.-M., 2012, Handbook of Newsvendor Problems, V176
[8]   THE SOLIDARITY AXIOM FOR QUASI-LINEAR SOCIAL CHOICE PROBLEMS [J].
CHUN, Y .
SOCIAL CHOICE AND WELFARE, 1986, 3 (04) :297-310
[9]   FARSIGHTED COALITIONAL STABILITY [J].
CHWE, MSY .
JOURNAL OF ECONOMIC THEORY, 1994, 63 (02) :299-325
[10]   Population monotonic path schemes for simple games [J].
Ciftci, Baris ;
Borm, Peter ;
Hamers, Herbert .
THEORY AND DECISION, 2010, 69 (02) :205-218