Personalized Information Retrieval in Digital Ecosystems

被引:0
作者
Zhu, Dengya [1 ]
Dreher, Heinz [1 ]
机构
[1] Curtin Univ Technol, Perth, WA 6845, Australia
来源
2008 2ND IEEE INTERNATIONAL CONFERENCE ON DIGITAL ECOSYSTEMS AND TECHNOLOGIES | 2008年
关键词
information retrieval; personalization; user profile; machine learning; kNN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Search results personalization is considered a promising approach to boost the quality of text retrieval. In this paper, a personalized information retrieval paradigm is proposed which not only implicitly creates user profile by learning users' search history, search preferences, and desktop information by kNN algorithm; but also intends to deal with the problem of search concepts drift through adjusting the weight of category which represents users' search preference. By comparing the cosine similarities between vectors represent personal valued search concepts in user profiles, and vectors represent search concepts in the retrieved search results, the search results will be tailed to better match users' information needs.
引用
收藏
页码:451 / 456
页数:6
相关论文
共 35 条
[1]  
[Anonymous], P 28 ANN INT ACM SIG
[2]  
[Anonymous], 1997, Machine Learning
[3]  
Baeza-Yates R.A., 1999, Modern Information Retrieval
[4]  
BOLEY H, 2007, P IN IEEE DIG EC TEC, P401
[5]  
Chakrabarti S., 2003, Mining the Web: Discovering knowledge from hypertext data
[6]  
Chowdhury G.G., 2004, INTRO MODERN INFORM
[7]  
DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO
[8]  
2-9
[9]  
Gauch S., 2003, Web Intelligence and Agent Systems, V1, P219
[10]   Web search - Your way [J].
Glover, E ;
Lawrence, S ;
Gordon, M ;
Birmingham, W ;
Giles, CL .
COMMUNICATIONS OF THE ACM, 2001, 44 (12) :97-102