Adaptive δ-Generalized Labeled Multi-Bernoulli Filter for Multi-Object Detection and Tracking

被引:7
作者
Liu, Zong-Xiang [1 ]
Gan, Jie [1 ]
Li, Jin-Song [1 ]
Wu, Mian [1 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-object tracking; delta-generalized labeled multi-Bernoulli filter; object detection; adaptive filter;
D O I
10.1109/ACCESS.2020.3047802
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The delta-generalized labeled multi-Bernoulli (delta-GLMB) filter is an efficient approach for multiobject tracking in case of high clutter density and low detection probability. However, the formulation of the original delta-GLMB filter requires that the birth delta-GLMB filtering density is known a priori. It is inapplicable for the birth object appearing from unknown positions. To address this problem, an adaptive delta-GLMB filter is proposed to detect and track the birth objects with unknown position information. This adaptive filter establishes the birth delta-GLMB filtering density by using measurements at previous three successive times. Simulation results indicate that the proposed adaptive delta-GLMB filter may efficiently detect and track the multiple objects with unknown positions. Simulation results also demonstrate that the proposed adaptive ffi-GLMB filter performs better than the other existing adaptive filters.
引用
收藏
页码:2100 / 2109
页数:10
相关论文
共 32 条
[1]   An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Hung Gia Hoang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) :1975-1987
[2]   Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter [J].
Ba-Ngu Vo ;
Ba-Tuong Vo ;
Dinh Phung .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (24) :6554-6567
[3]   Labeled Random Finite Sets and Multi-Object Conjugate Priors [J].
Ba-Tuong Vo ;
Ba-Ngu Vo .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (13) :3460-3475
[4]  
Bar-Shalom Y., 2000, Multitarget-Multisensor Tracking Applications and Advances, VIII
[5]  
Beard M, 2017, INT CONF CONTR AUTO, P86, DOI 10.1109/ICCAIS.2017.8217598
[6]   Multiple hypothesis tracking for multiple target tracking [J].
Blackman, SS .
IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 2004, 19 (01) :5-18
[7]   A Generalized Labeled Multi-Bernoulli Filter With Object Spawning [J].
Bryant, Daniel S. ;
Ba-Tuong Vo ;
Ba-Ngu Vo ;
Jones, Brandon A. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (23) :6177-6189
[8]   Efficient box particle implementation of the multi-sensor GLMB filter in the presence of triple measurement uncertainty [J].
Chen, Nanqi ;
Ji, Hongbing ;
Gao, Yongchan .
SIGNAL PROCESSING, 2019, 162 :307-316
[9]   Statistical performance analysis of track initiation techniques [J].
Hu, ZJ ;
Leung, H ;
Blanchette, M .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :445-456
[10]   TRACKING WITH DEBIASED CONSISTENT CONVERTED MEASUREMENTS VERSUS EKF [J].
LERRO, D ;
BARSHALOM, Y .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1993, 29 (03) :1015-1022