Particle swarm optimization based Nonlinear Least-squares Parameter Estimation of Maintenance Time Distribution

被引:0
|
作者
Lu, Zhong [1 ]
Sun, You-chao [1 ]
Zhou, Jia [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing, Jiangsu, Peoples R China
[2] China Eastern Airlines Jiangsu Ltd, Reliabil Off, Aircraft Maintenance Dept, Nanjing, Jiangsu, Peoples R China
来源
2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III | 2010年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maintenance time; parameter estimation; particle swarm optimization; nonlinear least-squares estimation; DESIGN;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maintenance time is the basis of maintainability quantitative analysis, and it is widely used in maintainability verification, demonstration or evaluation. The nonlinear least squares parameter evaluation methods of maintenance time distribution based on particle swarm optimization is proposed. Parameter's confidence interval is chosen as coding space of each particle, and objective function of nonlinear least-squares estimation is taken as fitness function of particle swarm optimization. With the operation of update of particle's velocity and position iteration iteratively, the optimum value of parameter can be acquired. Typical maintenance time distribution is taken Application instances, and the result shows that estimating precision of method proposed here is better than traditional method such as maximum likelihood estimation in most situations.
引用
收藏
页码:590 / 593
页数:4
相关论文
共 50 条
  • [31] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Aijia Ouyang
    Kenli Li
    Tung Khac Truong
    Ahmed Sallam
    Edwin H.-M. Sha
    Neural Computing and Applications, 2014, 25 : 1785 - 1799
  • [32] Three-Parameter Estimation of the Weibull Distribution Based on Least Squares Iteration
    Yang X.
    Song J.
    Xie L.
    Zhao B.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 20 - 26
  • [33] Nonlinear crosshole traveltime tomography using hybridizing particle swarm optimization with linearized least squares algorithm
    Ebrahimi, M. R.
    Riahi, M. A.
    Abadeh, M. Saniee
    BOLLETTINO DI GEOFISICA TEORICA ED APPLICATA, 2018, 59 (03) : 203 - 222
  • [34] Particle Swarm Optimization Applied to Parameter Estimation of the Four-Parameter Burr III Distribution
    Ozsoy, Volkan Soner
    Orkcu, H. Hasan
    Bal, Hasan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 895 - 909
  • [35] Particle Swarm Optimization Applied to Parameter Estimation of the Four-Parameter Burr III Distribution
    Volkan Soner Özsoy
    H. Hasan Örkcü
    Hasan Bal
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 895 - 909
  • [36] PARAMETER ESTIMATION FOR NOISY CHAOTIC SYSTEMS BASED ON AN IMPROVED PARTICLE SWARM OPTIMIZATION ALGORITHM
    Wei, Jiamin
    Yu, Yongguang
    Wang, Sha
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2015, 5 (02): : 232 - 242
  • [37] Real-Time Diagnosis of the Exhaust Recirculation in Diesel Engines Using Least-Squares Parameter Estimation
    Mohammadpour, Javad
    Grigoriadis, Karolos
    Franchek, Matthew
    Zwissler, Benjamin J.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (01): : 1 - 8
  • [38] Tilted Least-Squares Parameter Estimation of Linear Regression Models in the Presence of Outliers
    Mu, Biqiang
    Bai, Er-Wei
    Zheng, Wei Xing
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 2464 - 2470
  • [39] Least-Squares Estimation for the Subcritical Heston Model Based on Continuous-Time Observations
    Barczy, Matyas
    Nyul, Balas
    Pap, Gyula
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2019, 13 (01)
  • [40] A Hybrid Particle Swarm Algorithm for Nonlinear Parameter Estimation
    Pei, Shengyu
    Zhou, Yongquan
    Luo, Qifang
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 219 - 222