Particle swarm optimization based Nonlinear Least-squares Parameter Estimation of Maintenance Time Distribution

被引:0
|
作者
Lu, Zhong [1 ]
Sun, You-chao [1 ]
Zhou, Jia [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing, Jiangsu, Peoples R China
[2] China Eastern Airlines Jiangsu Ltd, Reliabil Off, Aircraft Maintenance Dept, Nanjing, Jiangsu, Peoples R China
来源
2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III | 2010年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maintenance time; parameter estimation; particle swarm optimization; nonlinear least-squares estimation; DESIGN;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maintenance time is the basis of maintainability quantitative analysis, and it is widely used in maintainability verification, demonstration or evaluation. The nonlinear least squares parameter evaluation methods of maintenance time distribution based on particle swarm optimization is proposed. Parameter's confidence interval is chosen as coding space of each particle, and objective function of nonlinear least-squares estimation is taken as fitness function of particle swarm optimization. With the operation of update of particle's velocity and position iteration iteratively, the optimum value of parameter can be acquired. Typical maintenance time distribution is taken Application instances, and the result shows that estimating precision of method proposed here is better than traditional method such as maximum likelihood estimation in most situations.
引用
收藏
页码:590 / 593
页数:4
相关论文
共 50 条
  • [21] Parameter estimation for chaotic system based on improved adaptive particle swarm optimization
    Wang, Ya
    Yu, Yongguang
    Wen, Guoguang
    Wang, Hu
    Journal of Information and Computational Science, 2014, 11 (03): : 953 - 962
  • [22] A comparison of least-squares and Bayesian minimum risk edge parameter estimation
    Mulder, NJ
    Abkar, AA
    PATTERN RECOGNITION LETTERS, 1999, 20 (11-13) : 1397 - 1405
  • [23] Online optimal decoupled sliding mode control based on moving least squares and particle swarm optimization
    Mahmoodabadi, M. J.
    Momennejad, S.
    Bagheri, A.
    INFORMATION SCIENCES, 2014, 268 : 342 - 356
  • [24] Zonotopic recursive least-squares parameter estimation: Application to fault detection
    Samada, Sergio E.
    Puig, Vicenc
    Nejjari, Fatiha
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (04) : 993 - 1014
  • [25] Designing for RBF networks based on particle swarm optimization and regularized orthogonal least squares
    Ren, Ziwu
    San, Ye
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 2825 - +
  • [26] A Improved Particle Swarm optimization and Its Application in the Parameter Estimation
    Wu Tiebin
    Cheng Yun
    Hu Zhikun
    Zhou Taoyun
    Liu Yunlian
    MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1150 - +
  • [27] Parameter Estimation for Asymptotic Regression Model by Particle Swarm Optimization
    Xu, Xing
    Li, Yuanxiang
    Wu, Yu
    Du, Xin
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 679 - 686
  • [28] Hybrid particle swarm optimization for parameter estimation of Muskingum model
    Ouyang, Aijia
    Li, Kenli
    Tung Khac Truong
    Sallam, Ahmed
    Sha, Edwin H-M.
    NEURAL COMPUTING & APPLICATIONS, 2014, 25 (7-8) : 1785 - 1799
  • [29] APPLICATION OF PARTICLE SWARM OPTIMIZATION FOR PARAMETER ESTIMATION OF THE LOGISTIC MAP
    Sheludko, A. S.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (03): : 102 - 111
  • [30] Enhanced Particle Swarm Optimization Algorithm for Sea Clutter Parameter Estimation in Generalized Pareto Distribution
    Yang, Bin
    Li, Qing
    APPLIED SCIENCES-BASEL, 2023, 13 (16):