Particle swarm optimization based Nonlinear Least-squares Parameter Estimation of Maintenance Time Distribution

被引:0
|
作者
Lu, Zhong [1 ]
Sun, You-chao [1 ]
Zhou, Jia [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Civil Aviat, Nanjing, Jiangsu, Peoples R China
[2] China Eastern Airlines Jiangsu Ltd, Reliabil Off, Aircraft Maintenance Dept, Nanjing, Jiangsu, Peoples R China
来源
2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III | 2010年
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
maintenance time; parameter estimation; particle swarm optimization; nonlinear least-squares estimation; DESIGN;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maintenance time is the basis of maintainability quantitative analysis, and it is widely used in maintainability verification, demonstration or evaluation. The nonlinear least squares parameter evaluation methods of maintenance time distribution based on particle swarm optimization is proposed. Parameter's confidence interval is chosen as coding space of each particle, and objective function of nonlinear least-squares estimation is taken as fitness function of particle swarm optimization. With the operation of update of particle's velocity and position iteration iteratively, the optimum value of parameter can be acquired. Typical maintenance time distribution is taken Application instances, and the result shows that estimating precision of method proposed here is better than traditional method such as maximum likelihood estimation in most situations.
引用
收藏
页码:590 / 593
页数:4
相关论文
共 50 条
  • [1] Particle swarm optimization based Nonlinear Least-squares Parameter Estimation of Maintenance Time Distribution
    Lu, Zhong
    Sun, You-chao
    Zhou, Jia
    2011 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION ENGINEERING (ICFIE 2011), 2011, 8 : 243 - 248
  • [2] Nonlinear Least Squares Estimation for Parameters of Mixed Weibull Distributions by Using Particle Swarm Optimization
    Lu, Zhong
    Dong, Li
    Zhou, Jia
    IEEE ACCESS, 2019, 7 : 60545 - 60554
  • [3] Nonlinear parameter estimation through particle swarm optimization
    Schwaab, Marcio
    Biscaia, Evaristo Chalbaud, Jr.
    Monteiro, Jose Luiz
    Pinto, Jose Carlos
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (06) : 1542 - 1552
  • [4] A new method of parameter estimation and adaptive control of nonlinear systems with filterless least-squares
    Jing, Lida
    ASIAN JOURNAL OF CONTROL, 2024, 26 (03) : 1339 - 1345
  • [5] Study on Partial Least-Squares Regression Model of Simulating Freezing Depth Based on Particle Swarm Optimization
    Li, Tianxiao
    Fu, Qiang
    Meng, Fanxiang
    Wang, Zilong
    Wang, Xiaowei
    JOURNAL OF COMPUTERS, 2011, 6 (03) : 532 - 539
  • [6] Parameter estimation for chaotic system based on particle swarm optimization
    Gao, F
    Tong, HQ
    ACTA PHYSICA SINICA, 2006, 55 (02) : 577 - 582
  • [7] Combination of particle-swarm optimization with least-squares support vector machine for FDTD time series forecasting
    Yang, Y
    Chen, S
    Ye, ZB
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2006, 48 (01) : 141 - 144
  • [8] MODEL-PARAMETER ESTIMATION USING LEAST-SQUARES
    SAEZ, PB
    RITTMANN, BE
    WATER RESEARCH, 1992, 26 (06) : 789 - 796
  • [9] A Weighted Least-Squares Approach to Parameter Estimation Problems Based on Binary Measurements
    Colinet, Eric
    Juillard, Jerome
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (01) : 148 - 152
  • [10] Migration & Competition-based Particle Swarm Optimization for Parameter Estimation
    Ren, Ziwu
    Wang, Zhenhua
    Sun, Lining
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 590 - 595