Computing the finite time Lyapunov exponent for flows with uncertainties

被引:3
|
作者
You, Guoqiao [1 ]
Leung, Shingyu [2 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Clear Water Bay, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite time Lyapunov exponent; Flow visualization; Uncertainty; Dynamical systems; Numerical methods for PDEs; LAGRANGIAN COHERENT STRUCTURES; OPERATOR-SPLITTING METHOD; PARTITION; SCHEMES; GLYPHS;
D O I
10.1016/j.jcp.2020.109905
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an Eulerian approach to compute the expected finite time Lyapunov exponent (FTLE) of uncertain flow fields. The definition extends the usual FTLE for deterministic dynamical systems. Instead of performing Monte Carlo simulations as in typical Lagrangian computations, our approach associates each initial flow particle with a probability density function (PDF) which satisfies an advection-diffusion equation known as the Fokker-Planck (FP) equation. Numerically, we incorporate Strang's splitting scheme so that we can obtain a second-order accurate solution to the equation. To further improve the computational efficiency, we develop an adaptive approach to concentrate the computation of the FTLE near the ridge, where the so-called Lagrangian coherent structure (LCS) might exist. We will apply our proposed algorithm to several test examples including a real-life dataset to demonstrate the performance of the method. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Localized Finite-time Lyapunov Exponent for unsteady flow analysis
    Zuse Institute Berlin, Germany
    不详
    VMV 2009 - Proc. Vision, Model., Vis. Workshop 2009, (265-274):
  • [22] Relation Between the Finite-Time Lyapunov Exponent and Acoustic Wave
    Han, Shuaibin
    Luo, Yong
    Zhang, Shuhai
    AIAA JOURNAL, 2019, 57 (12) : 5114 - 5125
  • [23] Lagrangian coherent structures and the smallest finite-time Lyapunov exponent
    Haller, George
    Sapsis, Themistoklis
    CHAOS, 2011, 21 (02)
  • [24] An efficient approach for computing the finite time Lyapunov exponent in complex three-dimensional flow based on the discrete phase model
    Bian, Fang
    Sun, Lin
    Shi, Delei
    Bao, Futing
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 133
  • [25] UVaFTLE: Lagrangian finite time Lyapunov exponent extraction for fluid dynamic applications
    Rocío Carratalá-Sáez
    Yuri Torres
    José Sierra-Pallares
    Sergio López-Huguet
    Diego R. Llanos
    The Journal of Supercomputing, 2023, 79 : 9635 - 9665
  • [26] Neural Monte Carlo rendering of finite-time Lyapunov exponent fields
    Yang Xi
    Wanna Luan
    Jun Tao
    Visual Intelligence, 1 (1):
  • [27] Refining finite-time Lyapunov exponent ridges and the challenges of classifying them
    Allshouse, Michael R.
    Peacock, Thomas
    CHAOS, 2015, 25 (08)
  • [28] MCFTLE: Monte Carlo Rendering of Finite-Time Lyapunov Exponent Fields
    Guenther, Tobias
    Kuhn, Alexander
    Theisel, Holger
    COMPUTER GRAPHICS FORUM, 2016, 35 (03) : 381 - 390
  • [29] ANALYSIS AND MODELING OF AN EXPERIMENTAL DEVICE BY FINITE-TIME LYAPUNOV EXPONENT METHOD
    Santitissadeekorn, N.
    Bohl, D.
    Bollt, E. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (03): : 993 - 1006
  • [30] Finite Time Lyapunov Exponent Analysis of Model Predictive Control and Reinforcement Learning
    Krishna, Kartik
    Brunton, Steven L.
    Song, Zhuoyuan
    IEEE ACCESS, 2023, 11 : 118916 - 118930