Computing the finite time Lyapunov exponent for flows with uncertainties

被引:3
|
作者
You, Guoqiao [1 ]
Leung, Shingyu [2 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Math, Clear Water Bay, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite time Lyapunov exponent; Flow visualization; Uncertainty; Dynamical systems; Numerical methods for PDEs; LAGRANGIAN COHERENT STRUCTURES; OPERATOR-SPLITTING METHOD; PARTITION; SCHEMES; GLYPHS;
D O I
10.1016/j.jcp.2020.109905
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an Eulerian approach to compute the expected finite time Lyapunov exponent (FTLE) of uncertain flow fields. The definition extends the usual FTLE for deterministic dynamical systems. Instead of performing Monte Carlo simulations as in typical Lagrangian computations, our approach associates each initial flow particle with a probability density function (PDF) which satisfies an advection-diffusion equation known as the Fokker-Planck (FP) equation. Numerically, we incorporate Strang's splitting scheme so that we can obtain a second-order accurate solution to the equation. To further improve the computational efficiency, we develop an adaptive approach to concentrate the computation of the FTLE near the ridge, where the so-called Lagrangian coherent structure (LCS) might exist. We will apply our proposed algorithm to several test examples including a real-life dataset to demonstrate the performance of the method. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] An Eulerian approach for computing the finite time Lyapunov exponent
    Leung, Shingyu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (09) : 3500 - 3524
  • [2] Uncertainties in the finite-time Lyapunov exponent in an ocean ensemble prediction model
    Matuszak, Mateusz
    Rohrs, Johannes
    Isachsen, Pal Erik
    Idzanovic, Martina
    OCEAN SCIENCE, 2025, 21 (01) : 401 - 418
  • [3] Finite-time Lyapunov exponent-based analysis for compressible flows
    Gonzalez, D. R.
    Speth, R. L.
    Gaitonde, D. V.
    Lewis, M. J.
    CHAOS, 2016, 26 (08)
  • [4] Fast computation of finite-time Lyapunov exponent fields for unsteady flows
    Brunton, Steven L.
    Rowley, Clarence W.
    CHAOS, 2010, 20 (01)
  • [5] Eulerian Algorithms for Computing the Forward Finite Time Lyapunov Exponent Without Finite Difference Upon the Flow Map
    You, Guoqiao
    Xue, Changfeng
    Deng, Shaozhong
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (05) : 1467 - 1488
  • [6] Nonlinear finite-time Lyapunov exponent and predictability
    Ding, Ruiqiang
    Li, Jianping
    PHYSICS LETTERS A, 2007, 364 (05) : 396 - 400
  • [7] An Improved Eulerian Approach for the Finite Time Lyapunov Exponent
    You, Guoqiao
    Leung, Shingyu
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 76 (03) : 1407 - 1435
  • [8] UNCERTAINTY IN FINITE-TIME LYAPUNOV EXPONENT COMPUTATIONS
    Balasuriya, Sanjeeva
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2020, 7 (02): : 313 - 337
  • [9] Visual Analysis of the Finite-Time Lyapunov Exponent
    Sagrista, Antoni
    Jordan, Stefan
    Sadlo, Filip
    COMPUTER GRAPHICS FORUM, 2020, 39 (03) : 331 - 342
  • [10] An Improved Eulerian Approach for the Finite Time Lyapunov Exponent
    Guoqiao You
    Shingyu Leung
    Journal of Scientific Computing, 2018, 76 : 1407 - 1435