An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

被引:104
|
作者
Raman, K. S. [1 ]
Smalyuk, V. A. [1 ]
Casey, D. T. [1 ]
Haan, S. W. [1 ]
Hoover, D. E. [2 ]
Hurricane, O. A. [1 ]
Kroll, J. J. [1 ]
Nikroo, A. [2 ]
Peterson, J. L. [1 ]
Remington, B. A. [1 ]
Robey, H. F. [1 ]
Clark, D. S. [1 ]
Hammel, B. A. [1 ]
Landen, O. L. [1 ]
Marinak, M. M. [1 ]
Munro, D. H. [1 ]
Peterson, K. J. [3 ]
Salmonson, J. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Gen Atom Co, San Diego, CA 92121 USA
[3] Sandia Natl Labs, Albuquerque, NM 87125 USA
关键词
RAYLEIGH-TAYLOR GROWTH; SINGLE-MODE; CONVERGENT; TARGETS; SIMULATIONS; STABILITY; RATES; HOT;
D O I
10.1063/1.4890570
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh-Taylor and Richtmyer-Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a "low-foot" drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:21
相关论文
共 10 条
  • [1] Hydrodynamic instability growth and mix experiments at the National Ignition Facility
    Smalyuk, V. A.
    Barrios, M.
    Caggiano, J. A.
    Casey, D. T.
    Cerjan, C. J.
    Clark, D. S.
    Edwards, M. J.
    Frenje, J. A.
    Gatu-Johnson, M.
    Glebov, V. Y.
    Grim, G.
    Haan, S. W.
    Hammel, B. A.
    Hamza, A.
    Hoover, D. E.
    Hsing, W. W.
    Hurricane, O.
    Kilkenny, J. D.
    Kline, J. L.
    Knauer, J. P.
    Kroll, J.
    Landen, O. L.
    Lindl, J. D.
    Ma, T.
    McNaney, J. M.
    Mintz, M.
    Moore, A.
    Nikroo, A.
    Parham, T.
    Peterson, J. L.
    Petrasso, R.
    Pickworth, L.
    Pino, J. E.
    Raman, K.
    Regan, S. P.
    Remington, B. A.
    Robey, H. F.
    Rowley, D. P.
    Sayre, D. B.
    Tipton, R. E.
    Weber, S. V.
    Widmann, K.
    Wilson, D. C.
    Yeamans, C. B.
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [2] Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility
    Ma, T.
    Hurricane, O. A.
    Callahan, D. A.
    Barrios, M. A.
    Casey, D. T.
    Dewald, E. L.
    Dittrich, T. R.
    Doeppner, T.
    Haan, S. W.
    Hinkel, D. E.
    Hopkins, L. F. Berzak
    Le Pape, S.
    MacPhee, A. G.
    Pak, A.
    Park, H. -S.
    Patel, P. K.
    Remington, B. A.
    Robey, H. F.
    Salmonson, J. D.
    Springer, P. T.
    Tommasini, R.
    Benedetti, L. R.
    Bionta, R.
    Bond, E.
    Bradley, D. K.
    Caggiano, J.
    Celliers, P.
    Cerjan, C. J.
    Church, J. A.
    Dixit, S.
    Dylla-Spears, R.
    Edgell, D.
    Edwards, M. J.
    Field, J.
    Fittinghoff, D. N.
    Frenje, J. A.
    Johnson, M. Gatu
    Grim, G.
    Guler, N.
    Hatarik, R.
    Herrmann, H. W.
    Hsing, W. W.
    Izumi, N.
    Jones, O. S.
    Khan, S. F.
    Kilkenny, J. D.
    Knauer, J.
    Kohut, T.
    Kozioziemski, B.
    Kritcher, A.
    PHYSICAL REVIEW LETTERS, 2015, 114 (14)
  • [3] Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility
    Spears, Brian K.
    Edwards, M. J.
    Hatchett, S.
    Kilkenny, J.
    Knauer, J.
    Kritcher, A.
    Lindl, J.
    Munro, D.
    Patel, P.
    Robey, H. F.
    Town, R. P. J.
    PHYSICS OF PLASMAS, 2014, 21 (04)
  • [4] Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility
    Schmitt, Mark J.
    Bradley, Paul A.
    Cobble, James A.
    Fincke, James R.
    Hakel, Peter
    Hsu, Scott C.
    Krasheninnikova, Natalia S.
    Kyrala, George A.
    Magelssen, Glenn R.
    Montgomery, David S.
    Murphy, Thomas J.
    Obrey, Kimberly A.
    Shah, Rahul C.
    Tregillis, Ian L.
    Baumgaertel, Jessica A.
    Wysocki, Frederick J.
    Batha, Steven H.
    Craxton, R. Stephen
    McKenty, Patrick W.
    Fitzsimmons, Paul
    Nikroo, Abbas
    Wallace, Russell
    PHYSICS OF PLASMAS, 2013, 20 (05)
  • [5] A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions
    Clark, D. S.
    Robey, H. F.
    Smalyuk, V. A.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [6] Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility
    Simakov, Andrei N.
    Wilson, Douglas C.
    Yi, Sunghwan A.
    Kline, John L.
    Clark, Daniel S.
    Milovich, Jose L.
    Salmonson, Jay D.
    Batha, Steven H.
    PHYSICS OF PLASMAS, 2014, 21 (02)
  • [7] Tungsten doped diamond shells for record neutron yield inertial confinement fusion experiments at the National Ignition Facility
    Braun, T.
    Kucheyev, S. O.
    Shin, S. J.
    Wang, Y. M.
    Ye, J.
    Teslich, N. E., Jr.
    Saw, C. K.
    Bober, D. B.
    Sedillo, E. M.
    Rice, N. G.
    Sequoia, K.
    Huang, H.
    Requieron, W.
    Nikroo, A.
    Ho, D. D.
    Haan, S. W.
    Hamza, A. V.
    Wild, C.
    Biener, J.
    NUCLEAR FUSION, 2023, 63 (01)
  • [8] Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique
    Pickworth, L. A.
    Hammel, B. A.
    Smalyuk, V. A.
    MacPhee, A. G.
    Scott, H. A.
    Robey, H. F.
    Landen, O. L.
    Barrios, M. A.
    Regan, S. P.
    Schneider, M. B.
    Hoppe, M., Jr.
    Kohut, T.
    Holunga, D.
    Walters, C.
    Haid, B.
    Dayton, M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (03)
  • [9] First Observation of Cross-Beam Energy Transfer Mitigation for Direct-Drive Inertial Confinement Fusion Implosions Using Wavelength Detuning at the National Ignition Facility
    Marozas, J. A.
    Hohenberger, M.
    Rosenberg, M. J.
    Turnbull, D.
    Collins, T. J. B.
    Radha, P. B.
    McKenty, P. W.
    Zuegel, J. D.
    Marshall, F. J.
    Regan, S. P.
    Sangster, T. C.
    Seka, W.
    Campbell, E. M.
    Goncharov, V. N.
    Bowers, M. W.
    Di Nicola, J. -M. G.
    Erbert, G.
    MacGowan, B. J.
    Pelz, L. J.
    Yang, S. T.
    PHYSICAL REVIEW LETTERS, 2018, 120 (08)
  • [10] First measurement of the 10B (α,n) 13N reaction in an inertial confinement fusion implosion at the National Ignition Facility: Initial steps toward the development of a radiochemistry mix diagnostic
    Lonardoni, D.
    Sauppe, J. P.
    Batha, S. H.
    Birge, Noah
    Bredeweg, T.
    Freeman, M.
    Geppert-Kleinrath, V.
    Gooden, M. E.
    Hayes, A. C.
    Huang, H.
    Jungman, G.
    Keenan, B. D.
    Kot, L.
    Meaney, K. D.
    Murphy, T.
    Velsko, C.
    Yeamans, C. B.
    Whitley, H. D.
    Wilde, C.
    Wilhelmy, J. B.
    PHYSICS OF PLASMAS, 2022, 29 (05)