Large deviations for Brownian motion on the Sierpinski gasket

被引:0
作者
Ben Arous, G
Kumagai, T [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
[2] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
关键词
large deviation; diffusion; Sierpinski gasket; fractal; branching process;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study large deviations for Brownian motion on the Sierpinski gasket in the short time limit. Because of the subtle oscillation of hitting times of the process, no large deviation principle can hold. In fact, our result shows that there is an infinity of different large deviation principles for different subsequences, with different (good) rate functions. Thus, instead of taking the time scaling epsilon --> 0, we prove that the large deviations hold for E-n(z) = (2/5)(n)z as n --> infinity, using one parameter family of rate functions I-z (z is an element of [2/5, 1)). As a corollary, we obtain Strassen-type laws of the iterated logarithm. (C) 2000 Elsevier Science B.V. All rights reserved. MSG. 60F10; 60J60; 60J80.
引用
收藏
页码:225 / 235
页数:11
相关论文
共 15 条
[1]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[2]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[3]  
BASS RF, 1998, IN PRESS OSAKA J MAT
[4]   TRANSITION DENSITY ESTIMATES FOR BROWNIAN-MOTION ON AFFINE NESTED FRACTALS [J].
FITZSIMMONS, PJ ;
HAMBLY, BM ;
KUMAGAI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :595-620
[5]  
FUJITA T, 1989, LARGE DEVIAITONS ONE
[6]  
FUKUSHIMA M, 1998, IN PRESS OSAKA J MAT
[7]  
Fukushima M., 1992, Ideas and Methods in Mathematical Analysis, Stochastics, and Applications: Volume 1: In Memory of Raphael Hoegh-Krohn, V1, P151
[8]  
Hsu E. P., 1990, PROBAB THEORY REL, V84, P103
[9]   HARMONIC CALCULUS ON PCF SELF-SIMILAR SETS [J].
KIGAMI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) :721-755
[10]   Short time asymptotic behaviour and large deviation for Brownian motion on some affine nested fractals [J].
Kumagai, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1997, 33 (02) :223-240