Wiener-Hopf solution for impenetrable wedges at skew incidence

被引:56
作者
Daniele, Vito G. [1 ]
Lombardi, Guido
机构
[1] Politecn Torino, Dipartimento Elettron, I-10129 Turin, Italy
[2] Ist Super Mario Boella, I-10138 Turin, Italy
关键词
diffraction; electromagnetic diffraction; electromagnetic surface waves; Fredholm integral equations; geometrical theory of diffraction (GTD); uniform theory of diffraction (UTD); wedges; Wiener-Hopf method;
D O I
10.1109/TAP.2006.880723
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new Wiener-Hopf approach for the solution of impenetrable wedges at skew incidence is presented. Mathematical aspects are described in a unified and consistent theory for angular region problems. Solutions are obtained using analytical and numerical-analytical approaches. Several numerical tests from the scientific literature validate the new technique, and new solutions for anisotropic surface impedance wedges are solved at skew incidence. The solutions are presented considering the geometrical and uniform theory of diffraction coefficients, total fields, and possible surface wave contributions.
引用
收藏
页码:2472 / 2485
页数:14
相关论文
共 55 条
[1]   On the non-commutative factorization of Wiener-Hopf kernels of Khrapkov type [J].
Abrahams, ID .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1974) :1719-1743
[2]   Second-order functional-difference equations.: II:: Scattering from a right-angled conductive wedge for E-polarization [J].
Antipov, YA ;
Silvestrov, VV .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2004, 57 :267-313
[3]   Second-order functional-difference equations. I: Method of the Riemann-Hilbert problem on Riemann surfaces [J].
Antipov, YA ;
Silvestrov, VV .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2004, 57 :245-265
[4]   Vector functional-difference equation in electromagnetic scattering [J].
Antipov, YA ;
Silvestrov, VV .
IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (01) :27-69
[5]   Diffraction at skew incidence by an anisotropic impedance wedge in electromagnetism theory: a new class of canonical cases [J].
Bernard, JML .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02) :595-613
[6]   SCATTERING BY AN INFINITE WEDGE WITH TENSOR IMPEDANCE BOUNDARY-CONDITIONS - A MOMENT METHOD PHYSICAL OPTICS SOLUTION FOR THE CURRENTS [J].
BILOW, HJ .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1991, 39 (06) :767-773
[7]  
Bowman J. J., 1969, ELECTROMAGNETIC ACOU
[8]  
Budaev B.V., 1995, DIFFRACTION WEDGES
[9]   Two-dimensional diffraction by a wedge with impedance boundary conditions [J].
Budaev, BV ;
Bogy, DB .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (06) :2073-2080
[10]  
Buldyrev VS, 2001, MATH METHODS MODERN