Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation

被引:148
作者
Geng, Xianguo [1 ]
Wu, Jianping [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert approach; Generalized Sasa-Satsuma equation; N-soliton solutions;
D O I
10.1016/j.wavemoti.2015.09.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A generalized Sasa-Satsuma equation on the line is studied via the Riemann-Hilbert approach. Firstly we derive a Lax pair associated with a 3 x 3 matrix spectral problem for the generalized Sasa-Satsuma equation. Then we give the spectral analysis of the Lax pair, from which a Riemann-Hilbert problem is formulated. Moreover, by solving the particular Riemann-Hilbert problems with vanishing scattering coefficients, N-soliton solutions are obtained for the generalized Sasa-Satsuma equation. In addition, the N-soliton solutions of the generalized Sasa-Satsuma equation are reduced to those of the Sasa-Satsuma equation and a new complex mKdV equation, respectively. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 26 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[2]  
Ablowitz M.J., 2003, Complex Variables
[3]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[4]   Interaction properties of complex modified Korteweg-de Vries (mKdV) solitons [J].
Anco, Stephen C. ;
Ngatat, Nestor Tchegoum ;
Willoughby, Mark .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (17) :1378-1394
[5]   Inverse scattering transform for 3-level coupled Maxwell-Bloch equations with inhomogeneous broadening [J].
Chakravarty, S. ;
Prinari, B. ;
Ablowitz, M. J. .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 278 :58-78
[6]  
Faddeev L. D., 1987, Hamiltonian methods in the theory of solitons, V23
[7]   Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy [J].
Geng, Xianguo ;
Zhai, Yunyun ;
Dai, H. H. .
ADVANCES IN MATHEMATICS, 2014, 263 :123-153
[8]   Sasa-Satsuma higher-order nonlinear Schrodinger equation and its bilinearization and multisoliton solutions [J].
Gilson, C ;
Hietarinta, J ;
Nimmo, J ;
Ohta, Y .
PHYSICAL REVIEW E, 2003, 68 (01) :10-166141
[9]   Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrodinger equation [J].
Guo, Boling ;
Ling, Liming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
[10]  
Hasegawa A., 1995, Solitons in Optical Communications