Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation

被引:144
作者
Geng, Xianguo [1 ]
Wu, Jianping [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert approach; Generalized Sasa-Satsuma equation; N-soliton solutions;
D O I
10.1016/j.wavemoti.2015.09.003
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A generalized Sasa-Satsuma equation on the line is studied via the Riemann-Hilbert approach. Firstly we derive a Lax pair associated with a 3 x 3 matrix spectral problem for the generalized Sasa-Satsuma equation. Then we give the spectral analysis of the Lax pair, from which a Riemann-Hilbert problem is formulated. Moreover, by solving the particular Riemann-Hilbert problems with vanishing scattering coefficients, N-soliton solutions are obtained for the generalized Sasa-Satsuma equation. In addition, the N-soliton solutions of the generalized Sasa-Satsuma equation are reduced to those of the Sasa-Satsuma equation and a new complex mKdV equation, respectively. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 26 条
  • [1] Ablowitz M. J., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
  • [2] Ablowitz M.J., 2003, Complex Variables
  • [3] Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
  • [4] Interaction properties of complex modified Korteweg-de Vries (mKdV) solitons
    Anco, Stephen C.
    Ngatat, Nestor Tchegoum
    Willoughby, Mark
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (17) : 1378 - 1394
  • [5] Inverse scattering transform for 3-level coupled Maxwell-Bloch equations with inhomogeneous broadening
    Chakravarty, S.
    Prinari, B.
    Ablowitz, M. J.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2014, 278 : 58 - 78
  • [6] Faddeev L. D., 1987, Hamiltonian methods in the theory of solitons, V23
  • [7] Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy
    Geng, Xianguo
    Zhai, Yunyun
    Dai, H. H.
    [J]. ADVANCES IN MATHEMATICS, 2014, 263 : 123 - 153
  • [8] Sasa-Satsuma higher-order nonlinear Schrodinger equation and its bilinearization and multisoliton solutions
    Gilson, C
    Hietarinta, J
    Nimmo, J
    Ohta, Y
    [J]. PHYSICAL REVIEW E, 2003, 68 (01): : 10 - 166141
  • [9] Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrodinger equation
    Guo, Boling
    Ling, Liming
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [10] Hasegawa A., 1995, Solitons in Optical Communications