Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives

被引:17
|
作者
Fan, Zhenbin [1 ]
机构
[1] Changshu Inst Technol, Dept Math, Suzhou 215500, Jiangsu, Peoples R China
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 03期
关键词
Riemann-Liouville fractional derivatives; Fractional resolvent; Strong solution; ORDER DIFFERENTIAL-EQUATIONS; OPERATOR;
D O I
10.1016/j.indag.2014.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive the existence and uniqueness of mild solutions for inhomogeneous fractional evolution equations in Banach spaces by means of the method of fractional resolvent. Furthermore, we give the necessary and sufficient conditions for the existence of strong solutions. An example of the fractional diffusion equation is also presented to illustrate our theory. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:516 / 524
页数:9
相关论文
共 50 条
  • [21] Solutions to Riemann-Liouville fractional integrodifferential equations via fractional resolvents
    Ji, Shaochun
    Yang, Dandan
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [22] APPROXIMATE CONTROLLABILITY OF FRACTIONAL EVOLUTION SYSTEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Liu, Zhenhai
    Li, Xiuwen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (04) : 1920 - 1933
  • [23] Approximation with Riemann-Liouville fractional derivatives
    Anastassiou, George A.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (03): : 357 - 365
  • [24] Degenerate Linear Evolution Equations with the Riemann-Liouville Fractional Derivative
    Fedorov, V. E.
    Plekhanova, M. V.
    Nazhimov, R. R.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (01) : 136 - 146
  • [25] Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann-Liouville fractional derivatives
    Liu, Yujing
    Yan, Chenguang
    Jiang, Weihua
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [26] EXISTENCE AND CONTINUATION THEOREMS OF RIEMANN-LIOUVILLE TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Kou, Chunhai
    Zhou, Huacheng
    Li, Changpin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [27] On the existence of solutions for nonlocal sequential boundary fractional differential equations via ψ-Riemann-Liouville derivative
    Haddouchi, Faouzi
    Samei, Mohammad Esmael
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [28] Existence of Positive Solutions to Boundary Value Problems with Mixed Riemann-Liouville and Quantum Fractional Derivatives
    Nyamoradi, Nemat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [29] Existence of Solutions for Riemann-Liouville Fractional Dirichlet Boundary Value Problem
    Li, Zhiyu
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (01) : 161 - 167
  • [30] Existence results for Riemann-Liouville fractional evolution inclusions in Banach spaces
    Dads, El Hadi Ait
    Benyoub, Mohammed
    Ziane, Mohamed
    AFRIKA MATEMATIKA, 2021, 32 (1-2) : 317 - 331