Existence and regularity of solutions for evolution equations with Riemann-Liouville fractional derivatives

被引:17
|
作者
Fan, Zhenbin [1 ]
机构
[1] Changshu Inst Technol, Dept Math, Suzhou 215500, Jiangsu, Peoples R China
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2014年 / 25卷 / 03期
关键词
Riemann-Liouville fractional derivatives; Fractional resolvent; Strong solution; ORDER DIFFERENTIAL-EQUATIONS; OPERATOR;
D O I
10.1016/j.indag.2014.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive the existence and uniqueness of mild solutions for inhomogeneous fractional evolution equations in Banach spaces by means of the method of fractional resolvent. Furthermore, we give the necessary and sufficient conditions for the existence of strong solutions. An example of the fractional diffusion equation is also presented to illustrate our theory. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:516 / 524
页数:9
相关论文
共 50 条
  • [1] Existence results for Riemann-Liouville fractional neutral evolution equations
    Liu, Yi-Liang
    Lv, Jing-Yun
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [2] Existence results for Riemann-Liouville fractional neutral evolution equations
    Yi-Liang Liu
    Jing-Yun Lv
    Advances in Difference Equations, 2014
  • [3] EXISTENCE OF POSITIVE SOLUTIONS FOR DIFFERENTIAL EQUATIONS INVOLVING RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DERIVATIVES
    Li, Yunhong
    Li, Yan
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, Mathematical Research Press (2018):
  • [4] Existence of Solutions for Fractional Differential Equations Involving Two Riemann-Liouville Fractional Orders
    Mohamed Houas
    Analysis in Theory and Applications, 2018, 34 (03) : 253 - 274
  • [5] Existence Results for Fractional Evolution Systems with Riemann-Liouville Fractional Derivatives and Nonlocal Conditions
    Kalamani, P.
    Arjunan, M. Mallika
    Mallika, D.
    Baleanu, D.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 487 - 504
  • [6] Existence of solutions for a class of nonlinear fractional difference equations of the Riemann-Liouville type
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Guirao, Juan L. G.
    Hamed, Y. S.
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2022, 2022 (01):
  • [7] EXISTENCE RESULTS FOR RIEMANN-LIOUVILLE FRACTIONAL EVOLUTION INCLUSIONS
    Huang, Yong
    Lv, Jingyun
    Liu, Zhenhai
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 305 - 325
  • [8] SOLVABILITY AND OPTIMAL CONTROL OF SEMILINEAR FRACTIONAL EVOLUTION EQUATIONS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Xiao, Yu
    Peng, Zijia
    FIXED POINT THEORY, 2022, 23 (02): : 741 - 762
  • [9] Approximate controllability of impulsive fractional neutral evolution equations with Riemann-Liouville fractional derivatives
    Liu, Xianghu
    Liu, Zhenhai
    Bin, Maojun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 17 (03) : 468 - 485
  • [10] Existence results for nonlinear fractional differential equations involving different Riemann-Liouville fractional derivatives
    Wang, Guotao
    Liu, Sanyang
    Baleanu, Dumitru
    Zhang, Lihong
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,