Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

被引:7
作者
Elyamny, Shaimaa [1 ,2 ]
Dimaggio, Elisabetta [1 ]
Pennelli, Giovanni [1 ]
机构
[1] Univ Pisa, Dipartimento Ingn Informaz, Via G Caruso, I-56122 Pisa, Italy
[2] City Sci Res & Technol Applicat SRTA City, Elect Mat Res Dept, Adv Technol & New Mat Res Inst, Alexandria 21934, Egypt
基金
英国科研创新办公室;
关键词
nanowires; Seebeck coefficient; thermal conductivity; thermoelectricity; FABRICATION;
D O I
10.3762/bjnano.11.153
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Thermoelectric generators made by large arrays of nanowires perpendicular to a silicon substrate, that is, so-called silicon nanowire forests are fabricated on large areas by an inexpensive metal-assisted etching technique. After fabrication, a thermal diffusion process is used for doping the nanowire forest with phosphorous. A suitable experimental technique has been developed for the measurement of the Seebeck coefficient under static conditions, and results are reported for different doping parameters. These results are in good agreement with numerical simulations of the doping process applied to silicon nanowires. These devices, based on doped nanowire forests, offer a possible route for the exploitation of the high power factor of silicon, which, combined with the very low thermal conductivity of nanostructures, will yield a high efficiency of the conversion of thermal to electrical energy.
引用
收藏
页码:1707 / 1713
页数:7
相关论文
共 28 条
[1]   ELECTRON AND HOLE MOBILITIES IN SILICON AS A FUNCTION OF CONCENTRATION AND TEMPERATURE [J].
ARORA, ND ;
HAUSER, JR ;
ROULSTON, DJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1982, 29 (02) :292-295
[2]   Thermoelectric performance in n-type bulk silicon: The influence of dopant concentration and dopant species [J].
Bennett, Nick S. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (07)
[3]   THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER OF HEAVILY DOPED N-TYPE SILICON [J].
BRINSON, ME ;
DUNSTAN, W .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1970, 3 (03) :483-&
[4]   Nanostructured Bulk Silicon as an Effective Thermoelectric Material [J].
Bux, Sabah K. ;
Blair, Richard G. ;
Gogna, Pawan K. ;
Lee, Hohyun ;
Chen, Gang ;
Dresselhaus, Mildred S. ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (15) :2445-2452
[5]   Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices [J].
Curtin, Benjamin M. ;
Fang, Eugene W. ;
Bowers, John E. .
JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (05) :887-894
[6]   Fabrication of Silicon Nanowire Forests for Thermoelectric Applications by Metal-Assisted Chemical Etching [J].
Dimaggio, Elisabetta ;
Narducci, Dario ;
Pennelli, Giovanni .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (12) :6279-6285
[7]   Potentialities of silicon nanowire forests for thermoelectric generation [J].
Dimaggio, Elisabetta ;
Pennelli, Giovanni .
NANOTECHNOLOGY, 2018, 29 (13)
[8]   Reliable Fabrication of Metal Contacts on Silicon Nanowire Forests [J].
Dimaggio, Elisabetta ;
Pennelli, Giovanni .
NANO LETTERS, 2016, 16 (07) :4348-4354
[9]   High Power Thermoelectric Generator Based on Vertical Silicon Nanowires [J].
Elyamny, Shaimaa ;
Dimaggio, Elisabetta ;
Magagna, Stefano ;
Narducci, Dario ;
Pennelli, Giovanni .
NANO LETTERS, 2020, 20 (07) :4748-4753
[10]   Thermal conductivity of silicon nanowire arrays with controlled roughness [J].
Feser, Joseph P. ;
Sadhu, Jyothi S. ;
Azeredo, Bruno P. ;
Hsu, Keng H. ;
Ma, Jun ;
Kim, Junhwan ;
Seong, Myunghoon ;
Fang, Nicholas X. ;
Li, Xiuling ;
Ferreira, Placid M. ;
Sinha, Sanjiv ;
Cahill, David G. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (11)