The local maximum clustering method and its application in microarray gene expression data analysis

被引:18
|
作者
Wu, XW [1 ]
Chen, YD
Brooks, BR
Su, YA
机构
[1] Natl Heart Lung & Blood Inst, Lab Biophys Chem, NIH, Bethesda, MD 20892 USA
[2] Natl Human Genome Res Inst, NIH, Bethesda, MD 20892 USA
[3] Loyola Univ, Ctr Med, Dept Pathol, Maywood, IL 60153 USA
关键词
data cluster; clustering method; microarray; gene expression; classification; model data sets;
D O I
10.1155/S1110865704309145
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An unsupervised data clustering method, called the local maximum clustering (LMC) method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the K-mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999).
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [21] Microarray gene expression data analysis
    Vachtsevanos, G
    Ding, YH
    Fairley, JA
    Gardner, AB
    Simeonova, P
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 105 - 108
  • [22] A review of independent component analysis application to microarray gene expression data
    Kong, Wei
    Vanderburg, Charles R.
    Gunshin, Hiromi
    Rogers, Jack T.
    Huang, Xudong
    BIOTECHNIQUES, 2008, 45 (05) : 501 - +
  • [23] Assessing agreement of clustering methods with gene expression microarray data
    Liu, Xueli
    Lee, Sheng-Chien
    Casella, George
    Peter, Gary F.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) : 5356 - 5366
  • [24] PARAMETRIC VALIDITY INDEX OF CLUSTERING FOR MICROARRAY GENE EXPRESSION DATA
    Fa, Rui
    Nandi, Asoke K.
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [25] Functional clustering of genes using microarray gene expression data
    Paul Spellman
    Audrey Gasch
    Michael Eisen
    Camilla Kao
    Patrick Brown
    David Botstein
    Nature Genetics, 1999, 23 (Suppl 3) : 75 - 75
  • [26] Kernel hierarchical gene clustering from microarray expression data
    Qin, J
    Lewis, DP
    Noble, WS
    BIOINFORMATICS, 2003, 19 (16) : 2097 - 2104
  • [27] Clustering gene expression signals from retinal microarray data
    Fleury, G
    Hero, A
    Yoshida, S
    Carter, T
    Barlow, C
    Swaroop, A
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4024 - 4027
  • [28] Improved direct LDA and its application to DNA microarray gene expression data
    Paliwal, Kuldip K.
    Sharma, Alok
    PATTERN RECOGNITION LETTERS, 2010, 31 (16) : 2489 - 2492
  • [29] Order-preserving clustering and its application to gene expression data
    Syeda-Mahmood, T
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 637 - 640
  • [30] Proximity Measures for Clustering Gene Expression Microarray Data: A Validation Methodology and a Comparative Analysis
    Jaskowiak, Pablo A.
    Campello, Ricardo J. G. B.
    Costa, Ivan G.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (04) : 845 - 857