Certified non-conservative tests for the structural stability of discrete multidimensional systems

被引:11
作者
Bouzidi, Y. [1 ]
Quadrat, A. [1 ]
Rouillier, F. [2 ]
机构
[1] Inria Lille Nord Europe, Non A Project, 40 Ave Halley,Bat A,Pk Plaza, F-59650 Villeneuve, France
[2] UPMC, Inria Paris, Ouragan Project, Inst Math Jussieu Paris Rive Gauche, 4 Pl Jussieu, F-75005 Paris, France
关键词
Multidimensional systems; Structural stability; Stability analysis; Computer algebra; POLAR VARIETIES; ZERO LOCATION; UNIT-CIRCLE; RESPECT; SET;
D O I
10.1007/s11045-018-0596-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we present new computer algebra based methods for testing the structural stability of n-D discrete linear systems (with n >= 2). More precisely, we show that the standard characterization of the structural stability of a multivariate rational transfer function (namely, the denominator of the transfer function does not have solutions in the unit polydisc of Cn) is equivalent to the fact that a certain system of polynomials does not have real solutions. We then use state-of-the-art computer algebra algorithms to check this last condition, and thus the structural stability of multidimensional systems.
引用
收藏
页码:1205 / 1235
页数:31
相关论文
共 41 条
[1]  
[Anonymous], 2006, ALGORITHMS COMPUTATI
[2]  
[Anonymous], 2007, IDEALS VARIETIES ALG, DOI DOI 10.1007/978-0-387-35651-8
[3]  
[Anonymous], 1964, Theory and Application of the z Transform Method
[4]   Real solving for positive dimensional systems [J].
Aubry, P ;
Rouillier, F ;
El Din, MS .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (06) :543-560
[5]  
Bachelier O., 2016, P IFAC JOINT S SSSC
[6]   LMI Stability Conditions for 2D Roesser Models [J].
Bachelier, Olivier ;
Paszke, Wojciech ;
Yeganefar, Nima ;
Mehdi, Driss ;
Cherifi, Abdelmadjid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (03) :766-770
[7]   Generalized polar varieties: geometry and algorithms [J].
Bank, B ;
Giusti, M ;
Heintz, J ;
Pardo, LM .
JOURNAL OF COMPLEXITY, 2005, 21 (04) :377-412
[8]   Polar varieties and efficient real elimination [J].
Bank, B ;
Giusti, M ;
Heintz, J ;
Mbakop, GM .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (01) :115-144
[9]   Testing stability of 2-D discrete systems by a set of real 1-D stability tests [J].
Bistritz, Y .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (07) :1312-1320
[10]   Zero location of polynomials with respect to the unit-circle unhampered by nonessential singularities [J].
Bistritz, Y .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (03) :305-314