The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018

被引:825
作者
Lee, D. S. [1 ]
Fahey, D. W. [2 ]
Skowron, A. [1 ]
Allen, M. R. [3 ,14 ]
Burkhardt, U. [4 ]
Chen, Q. [5 ]
Doherty, S. J. [6 ]
Freeman, S. [1 ]
Forster, P. M. [7 ]
Fuglestvedt, J. [8 ]
Gettelman, A. [9 ]
De Leon, R. R. [1 ]
Lim, L. L. [1 ]
Lund, M. T. [8 ]
Millar, R. J. [3 ,15 ]
Owen, B. [1 ]
Penner, J. E. [10 ]
Pitari, G. [12 ]
Prather, M. J. [11 ]
Sausen, R. [4 ]
Wilcox, L. J. [13 ]
机构
[1] Manchester Metropolitan Univ, Fac Sci & Engn, John Dalton Bldg,Chester St, Manchester M1 5GD, Lancs, England
[2] NOAA, CSL, Boulder, CO USA
[3] Univ Oxford, Sch Geog & Environm, Oxford, England
[4] Deutsch Zentrum Luft & Raumfahrt DLR, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[5] Peking Univ, Coll Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100871, Peoples R China
[6] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[7] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[8] CICERO Ctr Int Climate Res Oslo, POB 1129, N-0318 Oslo, Norway
[9] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[10] Univ Michigan, Dept Climate & Space Sci & Engn, 2455 Hayward St, Ann Arbor, MI 48109 USA
[11] Univ Calif Irvine, Dept Earth Syst Sci, 3329 Croul Hall, Irvine, CA 92697 USA
[12] Univ Aquila, Dept Phys & Chem Sci, Via Vetoio, I-67100 Laquila, Italy
[13] Univ Reading, Natl Ctr Atmospher Sci, Dept Meteorol, Reading RG6 6BB, Berks, England
[14] Univ Oxford, Dept Phys, Oxford, England
[15] Comm Climate Change, 151 Buckingham Palace Rd, London SW1W 9SZ, England
基金
英国自然环境研究理事会; 欧盟地平线“2020”; 美国国家科学基金会;
关键词
Aviation; Contrail cirrus; Climate; Radiative forcing; CO2; NOx; ATMOSPHERIC OZONE; CARBON-DIOXIDE; TROPOSPHERIC OZONE; TRAFFIC EMISSIONS; BLACK CARBON; WARMING POTENTIALS; RADIATIVE FORCINGS; NOX EMISSIONS; FUTURE-IMPACT; CONTRAIL;
D O I
10.1016/j.atmosenv.2020.117834
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr(-1), and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr(-1). Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The for-mation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m(-2) (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m(-2)), CO2 (34.3 mW m(-2)), and NOx (17.5 mW m(-2)). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m(-2). Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.
引用
收藏
页数:29
相关论文
共 164 条
[1]   SCOPE11 Method for Estimating Aircraft Black Carbon Mass and Particle Number Emissions [J].
Agarwal, Akshat ;
Speth, Raymond L. ;
Fritz, Thibaud M. ;
Jacob, S. Daniel ;
Rindlisbacher, Theo ;
Iovinelli, Ralph ;
Owen, Bethan ;
Miake-Lye, Richard C. ;
Sabnis, Jayant S. ;
Barrett, Steven R. H. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (03) :1364-1373
[2]  
Alfsen K.H., EFFICIENT ACCURATE C
[3]   A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation [J].
Allen, Myles R. ;
Shine, Keith P. ;
Fuglestvedt, Jan S. ;
Millar, Richard J. ;
Cain, Michelle ;
Frame, David J. ;
Macey, Adrian H. .
NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2018, 1
[4]  
Allen MR, 2016, NAT CLIM CHANGE, V6, P773, DOI [10.1038/nclimate2998, 10.1038/NCLIMATE2998]
[5]  
[Anonymous], 2017, Global Market Forecast Growing Horizons 2017/2036
[6]  
[Anonymous], 2015, 9191 MIN DEF DEF EQ
[7]   The millennial atmospheric lifetime of anthropogenic CO2 [J].
Archer, David ;
Brovkin, Victor .
CLIMATIC CHANGE, 2008, 90 (03) :283-297
[8]   Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation [J].
Balkanski, Y. ;
Myhre, G. ;
Gauss, M. ;
Raedel, G. ;
Highwood, E. J. ;
Shine, K. P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (10) :4477-4489
[9]  
Barrett S., 2010, LAE2010008N MIT
[10]   Bounding Global Aerosol Radiative Forcing of Climate Change [J].
Bellouin, N. ;
Quaas, J. ;
Gryspeerdt, E. ;
Kinne, S. ;
Stier, P. ;
Watson-Parris, D. ;
Boucher, O. ;
Carslaw, K. S. ;
Christensen, M. ;
Daniau, A. -L. ;
Dufresne, J. -L. ;
Feingold, G. ;
Fiedler, S. ;
Forster, P. ;
Gettelman, A. ;
Haywood, J. M. ;
Lohmann, U. ;
Malavelle, F. ;
Mauritsen, T. ;
McCoy, D. T. ;
Myhre, G. ;
Muelmenstaedt, J. ;
Neubauer, D. ;
Possner, A. ;
Rugenstein, M. ;
Sato, Y. ;
Schulz, M. ;
Schwartz, S. E. ;
Sourdeval, O. ;
Storelvmo, T. ;
Toll, V. ;
Winker, D. ;
Stevens, B. .
REVIEWS OF GEOPHYSICS, 2020, 58 (01)