Partially-federated learning: A new approach to achieving privacy and effectiveness

被引:14
作者
Fisichella, Marco [1 ]
Lax, Gianluca [2 ]
Russo, Antonia [2 ]
机构
[1] Leibniz Univ Hannover, Res Ctr L3S, Appelstr 9a, D-30167 Hannover, Germany
[2] Univ Mediterranea Reggio Calabria, DIIES Dept, Via Graziella,Local Feo Vito, I-89122 Reggio Di Calabria, Italy
关键词
Machine learning; k-anonymity; l-diversity; Distributed databases; Collaborative learning;
D O I
10.1016/j.ins.2022.10.082
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In Machine Learning, the data for training the model are stored centrally. However, when the data come from different sources and contain sensitive information, we can use feder-ated learning to implement a privacy-preserving distributed machine learning framework. In this case, multiple client devices participate in global model training by sharing only the model updates with the server while keeping the original data local. In this paper, we pro-pose a new approach, called partially-federated learning, that combines machine learning with federated learning. This hybrid architecture can train a unified model across multiple clients, where the individual client can decide whether a sample must remain private or can be shared with the server. This decision is made by a privacy module that can enforce various techniques to protect the privacy of client data. The proposed approach improves the performance compared to classical federated learning.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:534 / 547
页数:14
相关论文
共 40 条
[1]  
Aggarwal CC, 2008, ADV DATABASE SYST, V34, P1, DOI 10.1007/978-0-387-70992-5
[2]  
[Anonymous], 2021, White Paper
[3]   A Privacy-Preserving Localization Service for Assisted Living Facilities [J].
Buccafurri, Francesco ;
Lax, Gianluca ;
Nicolazzo, Serena ;
Nocera, Antonino .
IEEE TRANSACTIONS ON SERVICES COMPUTING, 2020, 13 (01) :16-29
[4]  
Canales V.R., 2016, Using a supervised learning model: two-class boosted decision tree algorithm for income prediction
[5]  
Chakrabarty Navoneel, 2018, 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). Proceedings, P207, DOI 10.1109/ICACCCN.2018.8748528
[6]   Privacy-preserving ridge regression on distributed data [J].
Chen, Yi-Ruei ;
Rezapour, Amir ;
Tzeng, Wen-Guey .
INFORMATION SCIENCES, 2018, 451 :34-49
[7]   A training-integrity privacy-preserving federated learning scheme with trusted execution environment [J].
Chen, Yu ;
Luo, Fang ;
Li, Tong ;
Xiang, Tao ;
Liu, Zheli ;
Li, Jin .
INFORMATION SCIENCES, 2020, 522 :69-79
[8]   A Bayesian Model to Predict COVID-19 Severity in Children [J].
Dominguez-Rodriguez, Sara ;
Villaverde, Serena ;
Sanz-Santaeufemia, Francisco J. ;
Grasa, Carlos ;
Soriano-Arandes, Antoni ;
Saavedra-Lozano, Jesus ;
Fumado, Victoria ;
Epalza, Cristina ;
Serna-Pascual, Miquel ;
Alonso-Cadenas, Jose A. ;
Rodriguez-Molino, Paula ;
Pujol-Morro, Joan ;
Aguilera-Alonso, David ;
Simo, Silvia ;
Villanueva-Medina, Sara ;
Isabel Iglesias-Bouzas, M. ;
Jose Mellado, M. ;
Herrero, Blanca ;
Melendo, Susana ;
De la Torre, Mercedes ;
Del Rosal, Teresa ;
Soler-Palacin, Pere ;
Calvo, Cristina ;
Urretavizcaya-Martinez, Maria ;
Pareja, Marta ;
Ara-Montojo, Fatima ;
Ruiz del Prado, Yolanda ;
Gallego, Nerea ;
Illan Ramos, Marta ;
Cobos, Elena ;
Tagarro, Alfredo ;
Moraleda, Cinta .
PEDIATRIC INFECTIOUS DISEASE JOURNAL, 2021, 40 (08) :E287-E293
[9]   Calibrating noise to sensitivity in private data analysis [J].
Dwork, Cynthia ;
McSherry, Frank ;
Nissim, Kobbi ;
Smith, Adam .
THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 :265-284