Generation and Evaluation of LAI and FPAR Products from Himawari-8 Advanced Himawari Imager (AHI) Data

被引:26
作者
Chen, Yepei [1 ,2 ]
Sun, Kaimin [1 ]
Chen, Chi [2 ]
Bai, Ting [1 ,3 ]
Park, Taejin [2 ]
Wang, Weile [4 ]
Nemani, Ramakrishna R. [4 ]
Myneni, Ranga B. [2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[2] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
[3] SUNY Buffalo, Univ Buffalo, Dept Geog, Buffalo, NY 14261 USA
[4] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
基金
中国国家自然科学基金;
关键词
Leaf area index (LAI); fraction of photosynthetically active radiation (FPAR); artificial neural networks (ANNs); Himawari-8 Advanced Himawari Imager (AHI); normalized difference vegetation index (NDVI); moderate resolution imaging spectroradiometer (MODIS); LEAF-AREA INDEX; CYCLOPES GLOBAL PRODUCTS; MODIS-LAI; VEGETATION INDEX; ABSORBED PAR; FAPAR; VALIDATION; FCOVER; FRACTION; MODEL;
D O I
10.3390/rs11131517
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation are two of the essential biophysical variables used in most global models of climate, hydrology, biogeochemistry, and ecology. Most LAI/FPAR products are retrieved from non-geostationary satellite observations. Long revisit times and cloud/cloud shadow contamination lead to temporal and spatial gaps in such LAI/FPAR products. For more effective use in monitoring of vegetation phenology, climate change impacts, disaster trend etc., in a timely manner, it is critical to generate LAI/FPAR with less cloud/cloud shadow contamination and at higher temporal resolution-something that is feasible with geostationary satellite data. In this paper, we estimate the geostationary Himawari-8 Advanced Himawari Imager (AHI) LAI/FPAR fields by training artificial neural networks (ANNs) with Himawari-8 normalized difference vegetation index (NDVI) and moderate resolution imaging spectroradiometer (MODIS) LAI/FPAR products for each biome type. Daily cycles of the estimated AHI LAI/FPAR products indicate that these are stable at 10-min frequency during the day. Comprehensive evaluations were carried out for the different biome types at different spatial and temporal scales by utilizing the MODIS LAI/FPAR products and the available field measurements. These suggest that the generated Himawari-8 AHI LAI/FPAR fields were spatially and temporally consistent with the benchmark MODIS LAI/FPAR products. We also evaluated the AHI LAI/FPAR products for their potential to accurately monitor the vegetation phenology-the results show that AHI LAI/FPAR products closely match the phenological development captured by the MODIS products.
引用
收藏
页数:19
相关论文
共 66 条
[41]   Validation of Himawari-8/AHI Radiometric Calibration Based on Two Years of In-Orbit Data [J].
Okuyama, Arata ;
Takahashi, Masaya ;
Date, Kenji ;
Hosaka, Keita ;
Murata, Hidehiko ;
Tabata, Tasuku ;
Yoshino, Ryoko .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2018, 96B :91-109
[42]   Preliminary validation of Himawari-8/AHI navigation and calibration [J].
Okuyama, Arata ;
Andou, Akiyoshi ;
Date, Kenji ;
Hoasaka, Keita ;
Mori, Nobutaka ;
Murata, Hidehiko ;
Tabata, Tasuku ;
Takahashi, Masaya ;
Yoshino, Ryoko ;
Bessho, Kotaro .
EARTH OBSERVING SYSTEMS XX, 2015, 9607
[43]  
Ovakoglou G, 2018, INT GEOSCI REMOTE SE, P8232, DOI 10.1109/IGARSS.2018.8519387
[44]   Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis [J].
Richardson, Andrew D. ;
Anderson, Ryan S. ;
Arain, M. Altaf ;
Barr, Alan G. ;
Bohrer, Gil ;
Chen, Guangsheng ;
Chen, Jing M. ;
Ciais, Philippe ;
Davis, Kenneth J. ;
Desai, Ankur R. ;
Dietze, Michael C. ;
Dragoni, Danilo ;
Garrity, Steven R. ;
Gough, Christopher M. ;
Grant, Robert ;
Hollinger, David Y. ;
Margolis, Hank A. ;
McCaughey, Harry ;
Migliavacca, Mirco ;
Monson, Russell K. ;
Munger, J. William ;
Poulter, Benjamin ;
Raczka, Brett M. ;
Ricciuto, Daniel M. ;
Sahoo, Alok K. ;
Schaefer, Kevin ;
Tian, Hanqin ;
Vargas, Rodrigo ;
Verbeeck, Hans ;
Xiao, Jingfeng ;
Xue, Yongkang .
GLOBAL CHANGE BIOLOGY, 2012, 18 (02) :566-584
[45]   Modeling the exchanges of energy, water, and carbon between continents and the atmosphere [J].
Sellers, PJ ;
Dickinson, RE ;
Randall, DA ;
Betts, AK ;
Hall, FG ;
Berry, JA ;
Collatz, GJ ;
Denning, AS ;
Mooney, HA ;
Nobre, CA ;
Sato, N ;
Field, CB ;
Henderson-Sellers, A .
SCIENCE, 1997, 275 (5299) :502-509
[46]   Spatial and temporal validation of the MODIS LAI and FPAR products across a boreal forest wildfire chronosequence [J].
Serbin, Shawn P. ;
Ahl, Douglas E. ;
Gower, Stith T. .
REMOTE SENSING OF ENVIRONMENT, 2013, 133 :71-84
[47]   Multiscale analysis and validation of the MODIS LAI product -: I.: Uncertainty assessment [J].
Tian, YH ;
Woodcock, CE ;
Wang, YJ ;
Privette, JL ;
Shabanov, NV ;
Zhou, LM ;
Zhang, Y ;
Buermann, W ;
Dong, JR ;
Veikkanen, B ;
Häme, T ;
Andersson, K ;
Ozdogan, M ;
Knyazikhin, Y ;
Myneni, RB .
REMOTE SENSING OF ENVIRONMENT, 2002, 83 (03) :414-430
[48]   Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products [J].
Verger, A. ;
Baret, F. ;
Weiss, M. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) :2789-2803
[49]   GEOCLIM: A global climatology of LAI, FAPAR, and FCOVER from VEGETATION observations for 1999-2010 [J].
Verger, Aleixandre ;
Baret, Frederic ;
Weiss, Marie ;
Filella, Iolanda ;
Penuelas, Josep .
REMOTE SENSING OF ENVIRONMENT, 2015, 166 :126-137
[50]  
Vinue Visus D., 2017, P 5 INT S REC ADV QU