Twisting and κ-Poincare

被引:16
作者
Borowiec, Andrzej [1 ]
Lukierski, Jerzy [1 ]
Pachol, Anna [2 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, PL-50206 Wroclaw, Poland
[2] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland
关键词
quantum groups; twist deformation; kappa-Poincare algebra; DEFORMATIONS; ALGEBRA;
D O I
10.1088/1751-8113/47/40/405203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the coproduct of D = 2 and D = 4 quantum kappa-Poincare algebras in a classical algebra basis cannot be obtained by a cochain twist depending only on Poincare algebra generators. We also argue that the nonexistence of such a twist does not imply the nonexistence of a universal R-matrix.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Cohomology of Graded Twisting of Hopf Algebras
    Yu, Xiaolan
    Yang, Jingting
    MATHEMATICS, 2023, 11 (12)
  • [2] Generalized twist deformations of Poincare and Galilei quantum groups
    Daszkiewicz, Marcin
    MODERN PHYSICS LETTERS A, 2015, 30 (07)
  • [3] Poincare/Koszul Duality
    Ayala, David
    Francis, John
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (03) : 847 - 933
  • [4] Twisting the q-deformations of compact semisimple Lie groups
    Neshveyev, Sergey
    Yamashita, Makoto
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (02) : 637 - 662
  • [5] Relative locality in κ-Poincare
    Gubitosi, Giulia
    Mercati, Flavio
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (14)
  • [6] κ-DEFORMED POINCARE ALGEBRAS AND QUANTUM CLIFFORD-HOPF ALGEBRAS
    Da Rocha, Roldao
    Bernardini, Alex E.
    Vaz, Jayme, Jr.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (05) : 821 - 836
  • [7] Quantum D=3 Euclidean and Poincare symmetries from contraction limits
    Kowalski-Glikman, Jerzy
    Lukierski, Jerzy
    Trzesniewski, Tomasz
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [8] A Piezoelectric Twisting Beam Actuator
    Grinberg, Inbar
    Maccabi, Nadav
    Kassie, Adne
    Elata, David
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (06) : 1279 - 1286
  • [9] The Hochschild complex of a twisting cochain
    Hess, Kathryn
    JOURNAL OF ALGEBRA, 2016, 451 : 302 - 356
  • [10] Noncommutative spaces and Poincare symmetry
    Meljanac, Stjepan
    Meljanac, Daniel
    Mercati, Flavio
    Pikutic, Danijel
    PHYSICS LETTERS B, 2017, 766 : 181 - 185