Steganalysis using color wavelet statistics and one-class support vector machines

被引:77
作者
Lyu, S [1 ]
Farid, H [1 ]
机构
[1] Dartmouth Coll, Dept Comp Sci, Hanover, NH 03755 USA
来源
SECURITY, STEGANOGRAPHY, AND WATERMARKING OF MULTIMEDIA CONTENTS VI | 2004年 / 5306卷
关键词
D O I
10.1117/12.526012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Steganographic messages can be embedded into digital images in ways that are imperceptible to the human eve. These messages, however, alter the underlying statistics of an image. We previously built statistical models using first-and higher-order wavelet statistics, and employed a non-linear support vector machines (SVM) to detect steganographic messages. In this paper we extend these results to exploit color statistics, and show how a one-class SVM greatly simplifies the training stage of the classifier.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 27 条
[1]   On the limits of steganography [J].
Anderson, RJ ;
Petitcolas, FAP .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1998, 16 (04) :474-481
[2]  
[Anonymous], OUTGUESS
[3]  
[Anonymous], 2003, C COMP VIS PATT REC
[4]   Image compression via joint statistical characterization in the wavelet domain [J].
Buccigrossi, RW ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (12) :1688-1701
[5]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[6]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[7]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[8]  
Duda R. O., 2000, PATTERN CLASSIFICATI
[9]  
FARID H, 2002, INT C IM PROC ROCH N
[10]  
Fletcher R., 2000, Practical Methods of Optimization, DOI [10.1002/9781118723203, DOI 10.1002/9781118723203]