Catalyst-Less and Transfer-Less Synthesis of Graphene on Si(100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures

被引:22
作者
Gudaitis, Rimantas [1 ]
Lazauskas, Algirdas [1 ]
Jankauskas, Sarunas [1 ]
Meskinis, Sarunas [1 ]
机构
[1] Kaunas Univ Technol, Inst Mat Sci, K Barsausko St 59, LT-51423 Kaunas, Lithuania
关键词
graphene; direct plasma synthesis; microwave plasma enhanced chemical vapor deposition; RAMAN-SPECTROSCOPY; DIRECT GROWTH; STRAIN; SCATTERING; INTERFACES; EVOLUTION; TIME;
D O I
10.3390/ma13245630
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, graphene was synthesized on the Si(100) substrates via the use of direct microwave plasma-enhanced chemical vapor deposition (PECVD). Protective enclosures were applied to prevent excessive plasma etching of the growing graphene. The properties of synthesized graphene were investigated using Raman scattering spectroscopy and atomic force microscopy. Synthesis time, methane and hydrogen gas flow ratio, temperature, and plasma power effects were considered. The synthesized graphene exhibited n-type self-doping due to the charge transfer from Si(100). The presence of compressive stress was revealed in the synthesized graphene. It was presumed that induction of thermal stress took place during the synthesis process due to the large lattice mismatch between the growing graphene and the substrate. Importantly, it was demonstrated that continuous horizontal graphene layers can be directly grown on the Si(100) substrates if appropriate configuration of the protective enclosure is used in the microwave PECVD process.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 68 条
[1]   Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere [J].
Armano, A. ;
Buscarino, G. ;
Cannas, M. ;
Gelardi, F. M. ;
Giannazzo, F. ;
Schiliro, E. ;
Agnello, S. .
CARBON, 2018, 127 :270-279
[2]   Graphene-SiO2 Interaction from Composites to Doping [J].
Armano, Angelo ;
Buscarino, Gianpiero ;
Cannas, Marco ;
Gelardi, Franco Mario ;
Giannazzo, Filippo ;
Schiliro, Emanuela ;
Lo Nigro, Raffaella ;
Agnello, Simonpietro .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (03)
[3]   Identifying suitable substrates for high-quality graphene-based heterostructures [J].
Banszerus, L. ;
Janssen, H. ;
Otto, M. ;
Epping, A. ;
Taniguchi, T. ;
Watanabe, K. ;
Beschoten, B. ;
Neumaier, D. ;
Stampfer, C. .
2D MATERIALS, 2017, 4 (02)
[4]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[5]   Direct synthesis of bilayer graphene on silicon dioxide substrates [J].
Barbosa, A. N. ;
Ptak, F. ;
Mendoza, C. D. ;
Maia da Costa, M. E. H. ;
Freire, F. L., Jr. .
DIAMOND AND RELATED MATERIALS, 2019, 95 :71-76
[6]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[7]   Effect of temperature on graphene grown by chemical vapor deposition [J].
Chaitoglou, Stefanos ;
Bertran, Enric .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (13) :8348-8356
[8]   Direct CVD Growth of Graphene on Traditional Glass: Methods and Mechanisms [J].
Chen, Zhaolong ;
Qi, Yue ;
Chen, Xudong ;
Zhang, Yanfeng ;
Liu, Zhongfan .
ADVANCED MATERIALS, 2019, 31 (09)
[9]   Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements [J].
Childres, Isaac ;
Jauregui, Luis A. ;
Tian, Jifa ;
Chen, Yong P. .
NEW JOURNAL OF PHYSICS, 2011, 13
[10]   Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD [J].
Chugh, Sunny ;
Mehta, Ruchit ;
Lu, Ning ;
Dios, Francis D. ;
Kim, Moon J. ;
Chen, Zhihong .
CARBON, 2015, 93 :393-399