On the representation of the genetic code by the attractors of 2-adic function

被引:2
|
作者
Axelsson, Ekaterina Yurova [1 ]
机构
[1] Linnaeus Univ, Int Ctr Math Modeling Phys Engn Econ & Cognit Sci, Vaxjo Kalmar, Sweden
关键词
genetic code; evolution; p-adic; dynamical systems; van der Put series; MITOCHONDRIAL-DNA; ORIGIN; EVOLUTION; VAN;
D O I
10.1088/0031-8949/2015/T165/014043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The genetic code is a map which gives the correspondence between codons in DNA and amino acids. As a continuation of the study made by Khrennikov and Kozyrev on the genetic code, we consider a construction, where amino acids are associated to the attractors of some two-adic function. In this paper, we give an explicit form of representations for the standard nuclear and vertebrate mitochondrial genetics codes. To set these functions we use a van der Put representation. The usage of the van der Put series reduces the complexity of computation for explicit form of the functions for the genetic codes.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] 2-ADIC DEGENERATION OF THE GENETIC CODE AND ENERGY OF BINDING OF CODONS
    Khrennikov, A. Yu.
    Kozyrev, S. V.
    QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 193 - +
  • [2] Genetic Code and Deformation of the 2-Dimensional 2-Adic Metric
    Khrennikov, Andrei Yu
    Kozyrev, Sergei, V
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2011, 3 (02) : 165 - 168
  • [3] Genetic code and deformation of the 2-dimensional 2-adic metric
    Andrei Yu. Khrennikov
    Sergei V. Kozyrev
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2011, 3 (2) : 165 - 168
  • [4] A minimal even type of the 2-adic Weil representation
    Wood, Aaron
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (1-2) : 257 - 283
  • [5] A minimal even type of the 2-adic Weil representation
    Aaron Wood
    Mathematische Zeitschrift, 2014, 277 : 257 - 283
  • [6] Regularity of a function related to the 2-adic logarithm
    Schlage-Puchta, Jan-Christoph
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (02) : 375 - 377
  • [7] On the 2-adic complexity and the κ-error 2-adic complexity of periodic binary sequences
    Hu, Honggang
    Feng, Dengguo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (02) : 874 - 883
  • [8] On 2-adic deformations
    Vytautas Paškūnas
    Mathematische Zeitschrift, 2017, 286 : 801 - 819
  • [9] On 2-adic deformations
    Paskuenas, Vytautas
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 801 - 819
  • [10] Periodic sequences with large 2-adic and k-error 2-adic complexities
    Dong, Li-Hua
    Hu, Yu-Pu
    Zeng, Yong
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2007, 35 (05): : 86 - 89